ترغب بنشر مسار تعليمي؟ اضغط هنا

Torch-Struct: Deep Structured Prediction Library

70   0   0.0 ( 0 )
 نشر من قبل Alexander M. Rush
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Alexander M. Rush




اسأل ChatGPT حول البحث

The literature on structured prediction for NLP describes a rich collection of distributions and algorithms over sequences, segmentations, alignments, and trees; however, these algorithms are difficult to utilize in deep learning frameworks. We introduce Torch-Struct, a library for structured prediction designed to take advantage of and integrate with vectorized, auto-differentiation based frameworks. Torch-Struct includes a broad collection of probabilistic structures accessed through a simple and flexible distribution-based API that connects to any deep learning model. The library utilizes batched, vectorized operations and exploits auto-differentiation to produce readable, fast, and testable code. Internally, we also include a number of general-purpose optimizations to provide cross-algorithm efficiency. Experiments show significant performance gains over fast baselines and case-studies demonstrate the benefits of the library. Torch-Struct is available at https://github.com/harvardnlp/pytorch-struct.

قيم البحث

اقرأ أيضاً

Expressive text encoders such as RNNs and Transformer Networks have been at the center of NLP models in recent work. Most of the effort has focused on sentence-level tasks, capturing the dependencies between words in a single sentence, or pairs of se ntences. However, certain tasks, such as argumentation mining, require accounting for longer texts and complicated structural dependencies between them. Deep structured prediction is a general framework to combine the complementary strengths of expressive neural encoders and structured inference for highly structured domains. Nevertheless, when the need arises to go beyond sentences, most work relies on combining the output scores of independently trained classifiers. One of the main reasons for this is that constrained inference comes at a high computational cost. In this paper, we explore the use of randomized inference to alleviate this concern and show that we can efficiently leverage deep structured prediction and expressive neural encoders for a set of tasks involving complicated argumentative structures.
Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embed dings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.
Building an effective adversarial attacker and elaborating on countermeasures for adversarial attacks for natural language processing (NLP) have attracted a lot of research in recent years. However, most of the existing approaches focus on classifica tion problems. In this paper, we investigate attacks and defenses for structured prediction tasks in NLP. Besides the difficulty of perturbing discrete words and the sentence fluency problem faced by attackers in any NLP tasks, there is a specific challenge to attackers of structured prediction models: the structured output of structured prediction models is sensitive to small perturbations in the input. To address these problems, we propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model with feedbacks from multiple reference models of the same structured prediction task. Based on the proposed attack, we further reinforce the victim model with adversarial training, making its prediction more robust and accurate. We evaluate the proposed framework in dependency parsing and part-of-speech tagging. Automatic and human evaluations show that our proposed framework succeeds in both attacking state-of-the-art structured prediction models and boosting them with adversarial training.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a nd structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.
Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constrain ts and using them for supervision, bypassing the difficulty of using domain expertise to manually specify constraints. Learning requires a black-box simulator of structured outputs, which generates valid labels, but need not model their corresponding inputs or the input-label relationship. At training time, we constrain the model to produce outputs that cannot be distinguished from simulated labels by adversarial training. Providing our framework with a small number of labeled inputs gives rise to a new semi-supervised structured prediction model; we evaluate this model on multiple tasks --- tracking, pose estimation and time series prediction --- and find that it achieves high accuracy with only a small number of labeled inputs. In some cases, no labels are required at all.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا