ﻻ يوجد ملخص باللغة العربية
Building an effective adversarial attacker and elaborating on countermeasures for adversarial attacks for natural language processing (NLP) have attracted a lot of research in recent years. However, most of the existing approaches focus on classification problems. In this paper, we investigate attacks and defenses for structured prediction tasks in NLP. Besides the difficulty of perturbing discrete words and the sentence fluency problem faced by attackers in any NLP tasks, there is a specific challenge to attackers of structured prediction models: the structured output of structured prediction models is sensitive to small perturbations in the input. To address these problems, we propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model with feedbacks from multiple reference models of the same structured prediction task. Based on the proposed attack, we further reinforce the victim model with adversarial training, making its prediction more robust and accurate. We evaluate the proposed framework in dependency parsing and part-of-speech tagging. Automatic and human evaluations show that our proposed framework succeeds in both attacking state-of-the-art structured prediction models and boosting them with adversarial training.
Deep Neural Network classifiers are vulnerable to adversarial attack, where an imperceptible perturbation could result in misclassification. However, the vulnerability of DNN-based image ranking systems remains under-explored. In this paper, we propo
K-Nearest Neighbor (kNN)-based deep learning methods have been applied to many applications due to their simplicity and geometric interpretability. However, the robustness of kNN-based classification models has not been thoroughly explored and kNN at
As a new programming paradigm, deep learning has expanded its application to many real-world problems. At the same time, deep learning based software are found to be vulnerable to adversarial attacks. Though various defense mechanisms have been propo
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In
Robust speaker recognition, including in the presence of malicious attacks, is becoming increasingly important and essential, especially due to the proliferation of several smart speakers and personal agents that interact with an individuals voice co