ترغب بنشر مسار تعليمي؟ اضغط هنا

A Kernel of Truth: Determining Rumor Veracity on Twitter by Diffusion Pattern Alone

96   0   0.0 ( 0 )
 نشر من قبل Aron Szanto
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work in the domain of misinformation detection has leveraged rich signals in the text and user identities associated with content on social media. But text can be strategically manipulated and accounts reopened under different aliases, suggesting that these approaches are inherently brittle. In this work, we investigate an alternative modality that is naturally robust: the pattern in which information propagates. Can the veracity of an unverified rumor spreading online be discerned solely on the basis of its pattern of diffusion through the social network? Using graph kernels to extract complex topological information from Twitter cascade structures, we train accurate predictive models that are blind to language, user identities, and time, demonstrating for the first time that such sanitized diffusion patterns are highly informative of veracity. Our results indicate that, with proper aggregation, the collective sharing pattern of the crowd may reveal powerful signals of rumor truth or falsehood, even in the early stages of propagation.



قيم البحث

اقرأ أيضاً

While social networks can provide an ideal platform for up-to-date information from individuals across the world, it has also proved to be a place where rumours fester and accidental or deliberate misinformation often emerges. In this article, we aim to support the task of making sense from social media data, and specifically, seek to build an autonomous message-classifier that filters relevant and trustworthy information from Twitter. For our work, we collected about 100 million public tweets, including users past tweets, from which we identified 72 rumours (41 true, 31 false). We considered over 80 trustworthiness measures including the authors profile and past behaviour, the social network connections (graphs), and the content of tweets themselves. We ran modern machine-learning classifiers over those measures to produce trustworthiness scores at various time windows from the outbreak of the rumour. Such time-windows were key as they allowed useful insight into the progression of the rumours. From our findings, we identified that our model was significantly more accurate than similar studies in the literature. We also identified critical attributes of the data that give rise to the trustworthiness scores assigned. Finally we developed a software demonstration that provides a visual user interface to allow the user to examine the analysis.
Diffusion source identification on networks is a problem of fundamental importance in a broad class of applications, including rumor controlling and virus identification. Though this problem has received significant recent attention, most studies hav e focused only on very restrictive settings and lack theoretical guarantees for more realistic networks. We introduce a statistical framework for the study of diffusion source identification and develop a confidence set inference approach inspired by hypothesis testing. Our method efficiently produces a small subset of nodes, which provably covers the source node with any pre-specified confidence level without restrictive assumptions on network structures. Moreover, we propose multiple Monte Carlo strategies for the inference procedure based on network topology and the probabilistic properties that significantly improve the scalability. To our knowledge, this is the first diffusion source identification method with a practically useful theoretical guarantee on general networks. We demonstrate our approach via extensive synthetic experiments on well-known random network models and a mobility network between cities concerning the COVID-19 spreading.
134 - Rong Jin , Weili Wu 2021
Recent years have seen various rumor diffusion models being assumed in detection of rumor source research of the online social network. Diffusion model is arguably considered as a very important and challengeable factor for source detection in networ ks but it is less studied. This paper provides an overview of three representative schemes of Independent Cascade-based, Epidemic-based, and Learning-based to model the patterns of rumor propagation as well as three major schemes of estimators for rumor sources since its inception a decade ago.
Nodes residing in different parts of a graph can have similar structural roles within their local network topology. The identification of such roles provides key insight into the organization of networks and can be used for a variety of machine learn ing tasks. However, learning structural representations of nodes is a challenging problem, and it has typically involved manually specifying and tailoring topological features for each node. In this paper, we develop GraphWave, a method that represents each nodes network neighborhood via a low-dimensional embedding by leveraging heat wavelet diffusion patterns. Instead of training on hand-selected features, GraphWave learns these embeddings in an unsupervised way. We mathematically prove that nodes with similar network neighborhoods will have similar GraphWave embeddings even though these nodes may reside in very different parts of the network, and our method scales linearly with the number of edges. Experiments in a variety of different settings demonstrate GraphWaves real-world potential for capturing structural roles in networks, and our approach outperforms existing state-of-the-art baselines in every experiment, by as much as 137%.
In online social media systems users are not only posting, consuming, and resharing content, but also creating new and destroying existing connections in the underlying social network. While each of these two types of dynamics has individually been s tudied in the past, much less is known about the connection between the two. How does user information posting and seeking behavior interact with the evolution of the underlying social network structure? Here, we study ways in which network structure reacts to users posting and sharing content. We examine the complete dynamics of the Twitter information network, where users post and reshare information while they also create and destroy connections. We find that the dynamics of network structure can be characterized by steady rates of change, interrupted by sudden bursts. Information diffusion in the form of cascades of post re-sharing often creates such sudden bursts of new connections, which significantly change users local network structure. These bursts transform users networks of followers to become structurally more cohesive as well as more homogenous in terms of follower interests. We also explore the effect of the information content on the dynamics of the network and find evidence that the appearance of new topics and real-world events can lead to significant changes in edge creations and deletions. Lastly, we develop a model that quantifies the dynamics of the network and the occurrence of these bursts as a function of the information spreading through the network. The model can successfully predict which information diffusion events will lead to bursts in network dynamics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا