ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Structural Node Embeddings Via Diffusion Wavelets

86   0   0.0 ( 0 )
 نشر من قبل Claire Donnat
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nodes residing in different parts of a graph can have similar structural roles within their local network topology. The identification of such roles provides key insight into the organization of networks and can be used for a variety of machine learning tasks. However, learning structural representations of nodes is a challenging problem, and it has typically involved manually specifying and tailoring topological features for each node. In this paper, we develop GraphWave, a method that represents each nodes network neighborhood via a low-dimensional embedding by leveraging heat wavelet diffusion patterns. Instead of training on hand-selected features, GraphWave learns these embeddings in an unsupervised way. We mathematically prove that nodes with similar network neighborhoods will have similar GraphWave embeddings even though these nodes may reside in very different parts of the network, and our method scales linearly with the number of edges. Experiments in a variety of different settings demonstrate GraphWaves real-world potential for capturing structural roles in networks, and our approach outperforms existing state-of-the-art baselines in every experiment, by as much as 137%.



قيم البحث

اقرأ أيضاً

While most network embedding techniques model the proximity between nodes in a network, recently there has been significant interest in structural embeddings that are based on node equivalences, a notion rooted in sociology: equivalences or positions are collections of nodes that have similar roles--i.e., similar functions, ties or interactions with nodes in other positions--irrespective of their distance or reachability in the network. Unlike the proximity-based methods that are rigorously evaluated in the literature, the evaluation of structural embeddings is less mature. It relies on small synthetic or real networks with labels that are not perfectly defined, and its connection to sociological equivalences has hitherto been vague and tenuous. With new node embedding methods being developed at a breakneck pace, proper evaluation and systematic characterization of existing approaches will be essential to progress. To fill in this gap, we set out to understand what types of equivalences structural embeddings capture. We are the first to contribute rigorous intrinsic and extrinsic evaluation methodology for structural embeddings, along with carefully-designed, diverse datasets of varying sizes. We observe a number of different evaluation variables that can lead to different results (e.g., choice of similarity measure, classifier, label definitions). We find that degree distributions within nodes local neighborhoods can lead to simple yet effective baselines in their own right and guide the future development of structural embedding. We hope that our findings can influence the design of further node embedding methods and also pave the way for more comprehensive and fair evaluation of structural embedding methods.
Recent years have seen a rise in the development of representational learning methods for graph data. Most of these methods, however, focus on node-level representation learning at various scales (e.g., microscopic, mesoscopic, and macroscopic node e mbedding). In comparison, methods for representation learning on whole graphs are currently relatively sparse. In this paper, we propose a novel unsupervised whole graph embedding method. Our method uses spectral graph wavelets to capture topological similarities on each k-hop sub-graph between nodes and uses them to learn embeddings for the whole graph. We evaluate our method against 12 well-known baselines on 4 real-world datasets and show that our method achieves the best performance across all experiments, outperforming the current state-of-the-art by a considerable margin.
Graph embedding methods represent nodes in a continuous vector space, preserving information from the graph (e.g. by sampling random walks). There are many hyper-parameters to these methods (such as random walk length) which have to be manually tuned for every graph. In this paper, we replace random walk hyper-parameters with trainable parameters that we automatically learn via backpropagation. In particular, we learn a novel attention model on the power series of the transition matrix, which guides the random walk to optimize an upstream objective. Unlike previous approaches to attention models, the method that we propose utilizes attention parameters exclusively on the data (e.g. on the random walk), and not used by the model for inference. We experiment on link prediction tasks, as we aim to produce embeddings that best-preserve the graph structure, generalizing to unseen information. We improve state-of-the-art on a comprehensive suite of real world datasets including social, collaboration, and biological networks. Adding attention to random walks can reduce the error by 20% to 45% on datasets we attempted. Further, our learned attention parameters are different for every graph, and our automatically-found values agree with the optimal choice of hyper-parameter if we manually tune existing methods.
Neural node embeddings have recently emerged as a powerful representation for supervised learning tasks involving graph-structured data. We leverage this recent advance to develop a novel algorithm for unsupervised community discovery in graphs. Thro ugh extensive experimental studies on simulated and real-world data, we demonstrate that the proposed approach consistently improves over the current state-of-the-art. Specifically, our approach empirically attains the information-theoretic limits for community recovery under the benchmark Stochastic Block Models for graph generation and exhibits better stability and accuracy over both Spectral Clustering and Acyclic Belief Propagation in the community recovery limits.
356 - Guoji Fu , Chengbin Hou , Xin Yao 2019
The topological information is essential for studying the relationship between nodes in a network. Recently, Network Representation Learning (NRL), which projects a network into a low-dimensional vector space, has been shown their advantages in analy zing large-scale networks. However, most existing NRL methods are designed to preserve the local topology of a network, they fail to capture the global topology. To tackle this issue, we propose a new NRL framework, named HSRL, to help existing NRL methods capture both the local and global topological information of a network. Specifically, HSRL recursively compresses an input network into a series of smaller networks using a community-awareness compressing strategy. Then, an existing NRL method is used to learn node embeddings for each compressed network. Finally, the node embeddings of the input network are obtained by concatenating the node embeddings from all compressed networks. Empirical studies for link prediction on five real-world datasets demonstrate the advantages of HSRL over state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا