ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular dynamics simulation of fabrication of Cu mono-component metallic glass by physical vapor deposition on Zr substrate

66   0   0.0 ( 0 )
 نشر من قبل Yang Yu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, the single-component Cu metallic glass was fabricated by the physical vapor deposition on the Zr (0001) crystal substrate at 100 K using the classical molecular dynamic simulation. The same deposition process was performed on the Cu (1 0 0) and Ni (1 0 0) crystal substrate for comparison, only the Cu crystal deposited layer with the fcc structure can be obtained. When depositing the Cu atoms on the Zr substrate at 300 K, the crystal structure was formed, which indicates that except the suitable substrate, low temperature is also a key factor for the amorphous structure formation. The Cu liquid quenching from 2000 K to 100 K were also simulated with the cooling rate 1012 K/s to form the Cu glass film in this work. The Cu metallic glass from the two different processes (physical vapor deposition and rapid thermal quenching from liquid) revealed the same radial distribution function and X-ray diffraction pattern, but the different microstructure from the coordination number and Voronoi tessellation analysis.



قيم البحث

اقرأ أيضاً

Fabrication of single nickel-nitrogen (NE8) defect centers in diamond by chemical vapor deposition is demonstrated. Under continuous-wave 745 nm laser excitation single defects were induced to emit single photon pulses at 797 nm with a linewidth of 1 .5 nm at room temperature. Photon antibunching of single centers was demonstrated using a Hanbury-Brown and Twiss interferometer. Confocal images revealed approximately 10^6 optically active sites/cm^2 in the synthesized films. The fabrication of an NE8 based single photon source in synthetic diamond is important for fiber based quantum cryptography. It can also be used as an ideal point-like source for near-field optical microscopy.
By using molecular dynamics simulation, formation mechanisms of amorphous carbon in particular sp${}^3$ rich structure was researched. The problem that reactive empirical bond order potential cannot represent amorphous carbon properly was cleared in the transition process from graphite to diamond by high pressure and the deposition process of amorphous carbon thin films. Moreover, the new potential model which is based on electron distribution simplified as a point charge was developed by using downfolding method. As a result, the molecular dynamics simulation with the new potential could demonstrate the transition from graphite to diamond at the pressure of 15 GPa corresponding to experiment and the deposition of sp${}^3$ rich amorphous carbon.
Recently, monolayer SnS, a two-dimensional group IV monochalcogenide, was grown on a mica substrate at the micrometer-size scale by the simple physical vapor deposition (PVD), resulting in the successful demonstration of its in-plane room temperature ferroelectricity. However, the reason behind the monolayer growth remains unclear because it had been considered that the SnS growth inevitably results in a multilayer thickness due to the strong interlayer interaction arising from lone pair electrons. Here, we investigate the PVD growth of monolayer SnS from two different feed powders, highly purified SnS and commercial phase-impure SnS. Contrary to expectations, it is suggested that the mica substrate surface is modified by sulfur evaporated from the Sn2S3 contaminant in the as-purchased powder and the lateral growth of monolayer SnS is facilitated due to the enhanced surface diffusion of SnS precursor molecules, unlike the growth from the highly purified powder. This insight provides a guide to identify further controllable growth conditions.
We perform molecular dynamics simulations of friction for atomically thin Xe films sliding on Ag(111). We determine the inverse of the coefficient of friction (i.e. slip time) by direct calculation of the decay of the center of mass velocity after ap plying an external force, as well as from the velocity autocorrelation function. We find that the slip time exhibits a drop followed by a sharp increase in a range of coverage near one monolayer. The slip time then levels off with further coverage increases in agreement with previously reported experiments. Our simulations suggest that the friction found in this system is dominated by phonon excitations.
135 - G. Sainath , B.K. Choudhary 2016
Molecular dynamics simulations performed on <110> Cu nanopillars revealed significant difference in deformation behavior of nanopillars with and without twin boundary. The plastic deformation in single crystal Cu nanopillar without twin boundary was dominated by twinning, whereas the introduction of twin boundary changed the deformation mode from twinning to slip consisting of leading partial followed by trailing partial dislocations. This difference in deformation behavior has been attributed to the formation of stair-rod dislocation and its dissociation in the twinned nanopillars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا