ﻻ يوجد ملخص باللغة العربية
By using molecular dynamics simulation, formation mechanisms of amorphous carbon in particular sp${}^3$ rich structure was researched. The problem that reactive empirical bond order potential cannot represent amorphous carbon properly was cleared in the transition process from graphite to diamond by high pressure and the deposition process of amorphous carbon thin films. Moreover, the new potential model which is based on electron distribution simplified as a point charge was developed by using downfolding method. As a result, the molecular dynamics simulation with the new potential could demonstrate the transition from graphite to diamond at the pressure of 15 GPa corresponding to experiment and the deposition of sp${}^3$ rich amorphous carbon.
In this work, the single-component Cu metallic glass was fabricated by the physical vapor deposition on the Zr (0001) crystal substrate at 100 K using the classical molecular dynamic simulation. The same deposition process was performed on the Cu (1
To reproduce the diamond structure of silicon, double lattice (DL) potential constructed from two interatomic potentials for face centered cubic (fcc) lattice, is proposed for molecular dynamics (MD) simulations. For the validity test of MD simulatio
We study the kinetics of the H release from plasma-deposited hydrogenated amorphous carbon films under isothermal heating at 450, 500 and 600 {degree}C for long times up to several days using in situ Raman microscopy. Four Raman parameters are analyz
We revisit here how Raman spectroscopy can be used to estimate the H content in hard hydrogenated amorphous carbon layers. The H content was varied from 2 at.% to 30 at.%, using heat treatments of a a-C:H, from room temperature to 1300 K and was dete
Molecular dynamics simulation is used to study vacancy cluster formation in $beta$- and $alpha$-$Si_3N_4$ with varying vacancy contents (0 - 25.6 at%). Vacancies are randomly created in supercells, which were subsequently heat-treated for 114 nanosec