ﻻ يوجد ملخص باللغة العربية
We show that global lower bounds to the mode volume of a dielectric resonator can be computed via Lagrangian duality. State-of-the-art designs rely on sharp tips, but such structures appear to be highly sub-optimal at nanometer-scale feature sizes, and we demonstrate that computational inverse design offers orders-of-magnitude possible improvements. Our bound can be applied for geometries that are simultaneously resonant at multiple frequencies, for high-efficiency nonlinear-optics applications, and we identify the unavoidable penalties that must accompany such multiresonant structures.
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An
We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been perf
In this paper, we propose a novel design of dielectric laser-driven accelerator (DLA) utilizing evanescent electric field of racetrack ring resonator structures. Driven by laser light with the correctly designed optical phase window, sustained accele
We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump
We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum