ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity-vorticity-pressure formulation for the Oseen problem with variable viscosity

93   0   0.0 ( 0 )
 نشر من قبل Ricardo Ruiz Baier I
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the velocity. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we show that it satisfies the hypotheses of the Babuvska-Brezzi theory. Repeating the arguments of the continuous analysis, the stability and solvability of the discrete problem are established. The method is suited for any Stokes inf-sup stable finite element pair for velocity and pressure, while for vorticity any generic discrete space (of arbitrary order) can be used. A priori and a posteriori error estimates are derived using two specific families of discrete subspaces. Finally, we provide a set of numerical tests illustrating the behaviour of the scheme, verifying the theoretical convergence rates, and showing the performance of the adaptive algorithm guided by residual a posteriori error estimation.



قيم البحث

اقرأ أيضاً

We introduce a family of mixed methods and discontinuous Galerkin discretisations designed to numerically solve the Oseen equations written in terms of velocity, vorticity, and Bernoulli pressure. The unique solvability of the continuous problem is a ddressed by invoking a global inf-sup property in an adequate abstract setting for non-symmetric systems. The proposed finite element schemes, which produce exactly divergence-free discrete velocities, are shown to be well-defined and optimal convergence rates are derived in suitable norms. In addition, we establish optimal rates of convergence for a class of discontinuous Galerkin schemes, which employ stabilisation. A set of numerical examples serves to illustrate salient features of these methods.
A variational formulation is introduced for the Oseen equations written in terms of vor-ti-city and Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later recovered by a post-process. A finite element method is also proposed, consisting in equal-order Nedelec finite elements and piecewise continuous polynomials for the vorticity and the Bernoulli pressure, respectively. The {it a priori} error analysis is carried out in the $mathrm{L}^2$-norm for vorticity, pressure, and velocity; under a smallness assumption either on the convecting velocity, or on the mesh parameter. Furthermore, an {it a posteriori} error estimator is designed and its robustness and efficiency are studied using weighted norms. Finally, a set of numerical examples in 2D and 3D is given, where the error indicator serves to guide adaptive mesh refinement. These tests illustrate the behaviour of the new formulation in typical flow conditions, and they also confirm the theoretical findings.
We study a continuous data assimilation (CDA) algorithm for a velocity-vorticity formulation of the 2D Navier-Stokes equations in two cases: nudging applied to the velocity and vorticity, and nudging applied to the velocity only. We prove that under a typical finite element spatial discretization and backward Euler temporal discretization, application of CDA preserves the unconditional long-time stability property of the velocity-vorticity method and provides optimal long-time accuracy. These properties hold if nudging is applied only to the velocity, and if nudging is also applied to the vorticity then the optimal long-time accuracy is achieved more rapidly in time. Numerical tests illustrate the theory, and show its effectiveness on an application problem of channel flow past a flat plate.
By supplementing the pressure space for the Taylor-Hood element a triangular element that satisfies continuity over each element is produced. Making a novel extension of the patch argument to prove stability, this element is shown to be globally stab le and give optimal rates of convergence on a wide range of triangular grids. This theoretical result is extended in the discussion given in the appendix, showing how optimal convergence rates can be obtained on all grids. Two examples are presented, one illustrating the convergence rates and the other illustrating difficulties with the Taylor-Hood element which are overcome by the element presented here.
This article is the second in a series of two papers concerning the mathematical study of a boundary integral equation of the second kind that describes the interaction of $N$ dielectric spherical particles undergoing mutual polarisation. The first a rticle presented the numerical analysis of the Galerkin method used to solve this boundary integral equation and derived $N$-independent convergence rates for the induced surface charges and total electrostatic energy. The current article will focus on computational aspects of the algorithm. We provide a convergence analysis of the iterative method used to solve the underlying linear system and show that the number of liner solver iterations required to obtain a solution is independent of $N$. Additionally, we present two linear scaling solution strategies for the computation of the approximate induced surface charges. Finally, we consider a series of numerical experiments designed to validate our theoretical results and explore the dependence of the numerical errors and computational cost of solving the underlying linear system on different system parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا