ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy quark momentum diffusion coefficient in 3D gluon plasma

126   0   0.0 ( 0 )
 نشر من قبل Jarkko Peuron
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the heavy-quark momentum diffusion coefficient in far from equilibrium gluon plasma in a self-similar regime using real-time lattice techniques. We use 3 methods for the extraction: an unequal time electric field 2-point correlator integrated over the time difference, a spectral reconstruction (SR) method based on the measured equal time electric field correlator and a kinetic theory (KT) formula. The time-evolution of the momentum diffusion coefficient extracted using all methods is consistent with an approximate $t^{frac{-1}{2}}$ power law. We also study the extracted diffusion coefficient as a function of the upper limit of the time integration and observe that including the infrared enhancement of the equal-time correlation function in the SR calculation improves the agreement with the data for transient time behavior considerably. This is a gauge invariant confirmation of the infrared enhancement previously observed only in gauge fixed correlation functions.

قيم البحث

اقرأ أيضاً

We extract the heavy-quark diffusion coefficient kappa and the resulting momentum broadening <p^2> in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth of <p^2>, followed by linear growth with time due to Langevin-type dynamics and damped oscillations around this growth at the plasmon frequency. We show that these novel oscillations are not easily explained using perturbative techniques but result from an excess of gluons at low momenta. These oscillation are therefore a gauge invariant confirmation of the infrared enhancement we had previously observed in gauge-fixed correlation functions. We argue that the kinetic theory description of such systems becomes less reliable in the presence of this IR enhancement.
We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark sca ttering off light quarks in the QGP. The interactions are dominated by attractive meson and diquark channels which support bound and resonance states up to temperatures of ~1.5 T_c. We apply pertinent drag and diffusion coefficients (supplemented by perturbative scattering off gluons) in Langevin simulations in an expanding fireball to compute HQ spectra and elliptic flow in sqrt{s_{NN}}=200 GeV Au-Au collisions. We find good agreement with semileptonic electron-decay spectra which supports our nonperturbative computation of the HQ diffusion coefficient, suggestive for a strongly coupled QGP.
We report progress towards computing the heavy quark momentum diffusion coefficient from the lattice correlator of two chromoelectric fields attached to a Polyakov loop in pure SU(3) gauge theory. Using a multilevel algorithm and tree-level improveme nt, we study the behavior of the diffusion coefficient as a function of temperature in the wide range $1.1 < T/Tc < 10^4$.
We study the diffusion properties of the strongly interacting quark-gluon plasma (sQGP) and evaluate the diffusion coefficient matrix for the baryon ($B$), strange ($S$) and electric ($Q$) charges - $kappa_{qq}$ ($q,q = B, S, Q$) and show their depen dence on temperature $T$ and baryon chemical potential $mu_B$. The non-perturbative nature of the sQGP is evaluated within the Dynamical Quasi-Particle Model (DQPM) which is matched to reproduce the equation of state of the partonic matter above the deconfinement temperature $T_c$ from lattice QCD. The calculation of diffusion coefficients is based on two methods: i) the Chapman-Enskog method for the linearized Boltzmann equation, which allows to explore non-equilibrium corrections for the phase-space distribution function in leading order of the Knudsen numbers as well as ii) the relaxation time approximation (RTA). In this work we explore the differences between the two methods. We find a good agreement with the available lattice QCD data in case of the electric charge diffusion coefficient (or electric conductivity) at vanishing baryon chemical potential as well as a qualitative agreement with the recent predictions from the holographic approach for all diagonal components of the diffusion coefficient matrix. The knowledge of the diffusion coefficient matrix is also of special interest for more accurate hydrodynamic simulations.
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu ch exceeding typical values of the fields in equilibrated plasma. We consider a high energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter $hat q$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $hat q$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy ion collisions. The parameter $hat q$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $hat q$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Consequences of our findings for the phenomenology of jet quenching in relativistic heavy ion collisions are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا