ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy quark momentum diffusion coefficient from the lattice

220   0   0.0 ( 0 )
 نشر من قبل Viljami Leino
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report progress towards computing the heavy quark momentum diffusion coefficient from the lattice correlator of two chromoelectric fields attached to a Polyakov loop in pure SU(3) gauge theory. Using a multilevel algorithm and tree-level improvement, we study the behavior of the diffusion coefficient as a function of temperature in the wide range $1.1 < T/Tc < 10^4$.

قيم البحث

اقرأ أيضاً

We report progress towards computing the heavy quark momentum diffusion coefficient from the correlator of two chromo-electric fields attached to a Polyakov loop in pure SU(3) gauge theory. Using a multilevel algorithm and tree-level improvement, we study the behavior of the diffusion coefficient as a function of temperature in the wide range $1.1 < T / T_c < 10^4$ in order to compare it to perturbative expansions at high temperature. We find that within errors the lattice results are remarkably compatible with the next-to-leading order perturbative result.
We study the heavy-quark momentum diffusion coefficient in far from equilibrium gluon plasma in a self-similar regime using real-time lattice techniques. We use 3 methods for the extraction: an unequal time electric field 2-point correlator integrate d over the time difference, a spectral reconstruction (SR) method based on the measured equal time electric field correlator and a kinetic theory (KT) formula. The time-evolution of the momentum diffusion coefficient extracted using all methods is consistent with an approximate $t^{frac{-1}{2}}$ power law. We also study the extracted diffusion coefficient as a function of the upper limit of the time integration and observe that including the infrared enhancement of the equal-time correlation function in the SR calculation improves the agreement with the data for transient time behavior considerably. This is a gauge invariant confirmation of the infrared enhancement previously observed only in gauge fixed correlation functions.
A better understanding of transverse momentum (k_T-) dependent quark distributions in a hadron is needed to interpret several experimentally observed large angular asymmetries and to clarify the fundamental role of gauge links in non-abelian gauge th eories. Based on manifestly non-local gauge invariant quark operators we introduce process-independent k_T-distributions and study their properties in lattice QCD. We find that the longitudinal and transverse momentum dependence approximately factorizes, in contrast to the behavior of generalized parton distributions. The resulting quark k_T-probability densities for the nucleon show characteristic dipole deformations due to correlations between intrinsic k_T and the quark or nucleon spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of the LHP collaboration.
We identify the chiral and angular momentum content of the leading quark-antiquark Fock component for the $rho(770)$ and $rho(1450)$ mesons using a two-flavor lattice simulation with dynamical Overlap Dirac fermions. We extract this information from the overlap factors of two interpolating fields with different chiral structure and from the unitary transformation between chiral and angular momentum basis. For the chiral content of the mesons we find that the $rho(770)$ slightly favors the $(1,0)oplus(0,1)$ chiral representation and the $rho(1450)$ slightly favors the $(1/2,1/2)_b$ chiral representation. In the angular momentum basis the $rho(770)$ is then a $^3S_1$ state, in accordance with the quark model. The $rho(1450)$ is a $^3D_1$ state, showing that the quark model wrongly assumes the $rho(1450)$ to be a radial excitation of the $rho(770)$.
We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 l attice spacings $a=0.06$ and 0.12 fm, $(M_pi)_text{min} L approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا