ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoidance couplings on non-complete graphs

61   0   0.0 ( 0 )
 نشر من قبل Erik Bates
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A coupling of random walkers on the same finite graph, who take turns sequentially, is said to be an avoidance coupling if the walkers never collide. Previous studies of these processes have focused almost exclusively on complete graphs, in particular how many walkers an avoidance coupling can include. For other graphs, apart from special cases, it has been unsettled whether even two non-colliding simple random walkers can be coupled. In this article, we construct such a coupling on (i) any $d$-regular graph avoiding a fixed subgraph depending on $d$; and (ii) any square-free graph with minimum degree at least three. A corollary of the first result is that a uniformly random regular graph on $n$ vertices admits an avoidance coupling with high probability.



قيم البحث

اقرأ أيضاً

Recent work has introduced sparse exchangeable graphs and the associated graphex framework, as a generalization of dense exchangeable graphs and the associated graphon framework. The development of this subject involves the interplay between the stat istical modeling of network data, the theory of large graph limits, exchangeability, and network sampling. The purpose of the present paper is to clarify the relationships between these subjects by explaining each in terms of a certain natural sampling scheme associated with the graphex model. The first main technical contribution is the introduction of sampling convergence, a new notion of graph limit that generalizes left convergence so that it becomes meaningful for the sparse graph regime. The second main technical contribution is the demonstration that the (somewhat cryptic) notion of exchangeability underpinning the graphex framework is equivalent to a more natural probabilistic invariance expressed in terms of the sampling scheme.
Bootstrap percolation on a graph iteratively enlarges a set of occupied sites by adjoining points with at least $theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure, and we say that spanning occurs if e very point eventually becomes occupied. The main question concerns the critical probability, that is, the minimal initial density that makes spanning likely. The graphs we consider are products of cycles of $m$ points and complete graphs of $n$ points. The major part of the paper focuses on the case when two factors are complete graphs and one factor is a cycle. We identify the asymptotic behavior of the critical probability and show that, when $theta$ is odd, there are two qualitatively distinct phases: the transition from low to high probability of spanning as the initial density increases is sharp or gradual, depending on the size of $m$.
113 - Yizhe Zhu 2020
We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the adjacency matrix of $G$. Under the assumption that $d_1g eq d_2$ and $d_2=O(n^{2/3}),$ we show that $lambda_2(A)=O(sqrt{d_1})$ with high probability. As a corollary, combining the results from Tikhomirov and Youssef (2019), we confirm a conjecture in Cook (2017) that the second singular value of a uniform random $d$-regular digraph is $O(sqrt{d})$ for $1leq dleq n/2$ with high probability. This also implies that the second eigenvalue of a uniform random $d$-regular digraph is $O(sqrt{d})$ for $1leq dleq n/2$ with high probability. Assuming $d_2=O(1)$ and $d_1=O(n^2)$, we further prove that for a random $(d_1,d_2)$-biregular bipartite graph, $|lambda_i^2(A)-d_1|=O(sqrt{d_1(d_2-1)})$ for all $2leq ileq n+m-1$ with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook, Goldstein, and Johnson (2018) for random $d$-regular graphs and several new switching operations we defined for random bipartite biregular graphs.
Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph $G$, checks whether its toric ideal $P_G$ is a complete intersection or not. Whenever $P_G$ is a complete intersection, the algorithm also returns a minimal set of generators of $P_G$. Moreover, we prove that if $G$ is a connected graph and $P_G$ is a complete intersection, then there exist two induced subgraphs $R$ and $C$ of $G$ such that the vertex set $V(G)$ of $G$ is the disjoint union of $V(R)$ and $V(C)$, where $R$ is a bipartite ring graph and $C$ is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if $R$ is $2$-connected and $C$ is connected, we list the families of graphs whose toric ideals are complete intersection.
An edge-coloring of a graph $G$ with colors $1,2,ldots,t$ is an interval $t$-coloring if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. A graph $G$ is interval colorable if i t has an interval $t$-coloring for some positive integer $t$. For an interval colorable graph $G$, $W(G)$ denotes the greatest value of $t$ for which $G$ has an interval $t$-coloring. It is known that the complete graph is interval colorable if and only if the number of its vertices is even. However, the exact value of $W(K_{2n})$ is known only for $n leq 4$. The second author showed that if $n = p2^q$, where $p$ is odd and $q$ is nonnegative, then $W(K_{2n}) geq 4n-2-p-q$. Later, he conjectured that if $n in mathbb{N}$, then $W(K_{2n}) = 4n - 2 - leftlfloorlog_2{n}rightrfloor - left | n_2 right |$, where $left | n_2 right |$ is the number of $1$s in the binary representation of $n$. In this paper we introduce a new technique to construct interval colorings of complete graphs based on their 1-factorizations, which is used to disprove the conjecture, improve lower and upper bounds on $W(K_{2n})$ and determine its exact values for $n leq 12$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا