ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrap percolation on products of cycles and complete graphs

152   0   0.0 ( 0 )
 نشر من قبل David Sivakoff
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Bootstrap percolation on a graph iteratively enlarges a set of occupied sites by adjoining points with at least $theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure, and we say that spanning occurs if every point eventually becomes occupied. The main question concerns the critical probability, that is, the minimal initial density that makes spanning likely. The graphs we consider are products of cycles of $m$ points and complete graphs of $n$ points. The major part of the paper focuses on the case when two factors are complete graphs and one factor is a cycle. We identify the asymptotic behavior of the critical probability and show that, when $theta$ is odd, there are two qualitatively distinct phases: the transition from low to high probability of spanning as the initial density increases is sharp or gradual, depending on the size of $m$.

قيم البحث

اقرأ أيضاً

A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected independently with probability p > 0, we provide a law of large numbers for the number of vertices that will have been infected by the end of the process. We also focus on a special case of such random graphs which exhibit a power-law degree distribution with exponent in (2,3). The first two authors have shown the existence of a critical function a_c(n) such that a_c(n)=o(n) with the following property. Let n be the number of vertices of the underlying random graph and let a(n) be the number of the vertices that are initially infected. Assume that a set of a(n) vertices is chosen randomly and becomes externally infected. If a(n) << a_c(n), then the process does not evolve at all, with high probability as n grows, whereas if a(n)>> a_c(n), then with high probability the final set of infected vertices is linear. Using the techniques of the previous theorem, we give the precise asymptotic fraction of vertices which will be eventually infected when a(n) >> a_c (n) but a(n) = o(n). Note that this corresponds to the case where p approaches 0.
A bootstrap percolation process on a graph $G$ is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infect ed and remains so forever. The parameter $rgeq 2$ is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse bootstrap percolation process in the case where the underlying graph is an inhomogeneous random graph, which exhibits a power-law degree distribution, and initially there are $a(n)$ randomly infected nodes. The main focus of this paper is the number of vertices that will have been infected by the end of the process. The main result of this work is that if the degree sequence of the random graph follows a power law with exponent $beta$, where $2 < beta < 3$, then a sublinear number of initially infected vertices is enough to spread the infection over a linear fraction of the nodes of the random graph, with high probability. More specifically, we determine explicitly a critical function $a_c(n)$ such that $a_c(n)=o(n)$ with the following property. Assuming that $n$ is the number of vertices of the underlying random graph, if $a(n) ll a_c(n)$, then the process does not evolve at all, with high probability as $n$ grows, whereas if $a(n)gg a_c(n)$, then there is a constant $eps>0$ such that, with high probability, the final set of infected vertices has size at least $eps n$. It turns out that when the maximum degree is $o(n^{1/(beta -1)})$, then $a_c(n)$ depends also on $r$. But when the maximum degree is $Theta (n^{1/(beta -1)})$, then $a_c (n)=n^{beta -2 over beta -1}$.
353 - Peter Ballen , Sudipto Guha 2015
Bootstrap percolation is an often used model to study the spread of diseases, rumors, and information on sparse random graphs. The percolation process demonstrates a critical value such that the graph is either almost completely affected or almost co mpletely unaffected based on the initial seed being larger or smaller than the critical value. To analyze intervention strategies we provide the first analytic determination of the critical value for basic bootstrap percolation in random graphs when the vertex thresholds are nonuniform and provide an efficient algorithm. This result also helps solve the problem of Percolation with Coinflips when the infection process is not deterministic, which has been a criticism about the model. We also extend the results to clustered random graphs thereby extending the classes of graphs considered. In these graphs the vertices are grouped in a small number of clusters, the clusters model a fixed communication network and the edge probability is dependent if the vertices are in close or far clusters. We present simulations for both basic percolation and interventions that support our theoretical results.
86 - Zhongyang Li 2020
We prove that for a non-amenable, locally finite, connected, transitive, planar graph with one end, any automorphism invariant site percolation on the graph does not have exactly 1 infinite 1-cluster and exactly 1 infinite 0-cluster a.s. If we furthe r assume that the site percolation is insertion-tolerant and a.s.~there exists a unique infinite 0-cluster, then a.s.~there are no infinite 1-clusters. The proof is based on the analysis of a class of delicately constructed interfaces between clusters and contours. Applied to the case of i.i.d.~Bernoulli site percolation on infinite, connected, locally finite, transitive, planar graphs, these results solve two conjectures of Benjamini and Schramm (Conjectures 7 and 8 in cite{bs96}) in 1996.
We consider the discrete Boolean model of percolation on graphs satisfying a doubling metric condition. We study sufficient conditions on the distribution of the radii of balls placed at the points of a Bernoulli point process for the absence of perc olation, provided that the retention parameter of the underlying point process is small enough. We exhibit three families of interesting graphs where the main result of this work holds. Finally, we give sufficient conditions for ergodicity of the discrete Boolean model of percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا