ﻻ يوجد ملخص باللغة العربية
Recent work has introduced sparse exchangeable graphs and the associated graphex framework, as a generalization of dense exchangeable graphs and the associated graphon framework. The development of this subject involves the interplay between the statistical modeling of network data, the theory of large graph limits, exchangeability, and network sampling. The purpose of the present paper is to clarify the relationships between these subjects by explaining each in terms of a certain natural sampling scheme associated with the graphex model. The first main technical contribution is the introduction of sampling convergence, a new notion of graph limit that generalizes left convergence so that it becomes meaningful for the sparse graph regime. The second main technical contribution is the demonstration that the (somewhat cryptic) notion of exchangeability underpinning the graphex framework is equivalent to a more natural probabilistic invariance expressed in terms of the sampling scheme.
We study the spectrum of a random multigraph with a degree sequence ${bf D}_n=(D_i)_{i=1}^n$ and average degree $1 ll omega_n ll n$, generated by the configuration model, and also the spectrum of the analogous random simple graph. We show that, when
We consider sampling and enumeration problems for Markov equivalence classes. We create and analyze a Markov chain for uniform random sampling on the DAGs inside a Markov equivalence class. Though the worst case is exponentially slow mixing, we find
A coupling of random walkers on the same finite graph, who take turns sequentially, is said to be an avoidance coupling if the walkers never collide. Previous studies of these processes have focused almost exclusively on complete graphs, in particula
We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the adjacency matrix of $G$. Under the assumption that $d_1g
We introduce two new bootstraps for exchangeable random graphs. One, the empirical graphon, is based purely on resampling, while the other, the histogram stochastic block model, is a model-based sieve bootstrap. We show that both of them accurately a