ترغب بنشر مسار تعليمي؟ اضغط هنا

Bath-induced Zeno localization in driven many-body quantum systems

98   0   0.0 ( 0 )
 نشر من قبل Thibaud Maimbourg
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of the system are ergodic, a sufficiently strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect, as manifested by the hole-burning shape of the electron paramagnetic resonance spectrum. Our results provide an explanation of the breakdown of the thermal mixing regime experimentally observed above 4 - 5 Kelvin.



قيم البحث

اقرأ أيضاً

We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea r in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph ase transition is due to the so-called avalanche instability of the MBL phase. We show that the critical behavior can be determined analytically within this RG. On a rough $textit{qualitative}$ level the RG flow near the critical fixed point is similar to the Kosterlitz-Thouless (KT) flow as previously shown, but there are important differences in the critical behavior. Thus we show that this MBL transition is in a new universality class that is different from KT. The divergence of the correlation length corresponds to critical exponent $ u rightarrow infty$, but the divergence is weaker than for the KT transition.
Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath. Here we realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics. We find evidence for accelerated transport into the localized region, signature of a quantum avalanche. By measuring the site-resolved entropy we monitor how the avalanche travels through the localized system and thermalizes it site by site. Furthermore, we isolate the bath-induced dynamics by evaluating multipoint correlations between the bath and the system. Our results have fundamental implications on the robustness of many-body--localized systems and their critical behavior.
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l imited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dim ension, we find that the spectral form factor $K(t)$ of Floquet random circuits can be mapped exactly to a classical Markov circuit, and, at late times, is related to the partition function of a frustration-free Rokhsar-Kivelson (RK) type Hamiltonian. Through this mapping, we show that the inverse of the spectral gap of the RK-Hamiltonian lower bounds the Thouless time $t_{mathrm{Th}}$ of the underlying circuit. For systems with conserved higher moments, we derive a field theory for the corresponding RK-Hamiltonian by proposing a generalized height field representation for the Hilbert space of the effective spin chain. Using the field theory formulation, we obtain the dispersion of the low-lying excitations of the RK-Hamiltonian in the continuum limit, which allows us to extract $t_{mathrm{Th}}$. In particular, we analytically argue that in a system of length $L$ that conserves the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ scales subdiffusively as $L^{2(m+1)}$. We also show that our formalism directly generalizes to higher dimensional circuits, and that in systems that conserve any component of the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ has the same scaling with the linear size of the system. Our work therefore provides a general approach for studying spectral statistics in constrained many-body chaotic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا