ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Non-Adiabatic Dynamics of Many-Body Quantum Systems

86   0   0.0 ( 0 )
 نشر من قبل Gianluca Gregori
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Perhaps the most successful and ubiquitous of these approaches is density functional theory (DFT). Its Kohn-Sham formulation has been the basis for many fundamental physical insights, and it has been successfully applied to fields as diverse as quantum chemistry, condensed matter and dense plasmas. Despite the progress made by DFT and related schemes, however, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. Based on the Bohmian trajectories formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without employing the adiabatic Born-Oppenheimer approximation.



قيم البحث

اقرأ أيضاً

We consider a dynamic protocol for quantum many-body systems, which enables to study the interplay between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics tends to increase entanglement, local measurem ents tend to disentangle, thus favoring decoherence. Close to a quantum transition where the system develops critical correlations with diverging length scales, the competition of the two drivings is analyzed within a dynamic scaling framework, allowing us to identify a regime (dynamic scaling limit) where the two mechanisms develop a nontrivial interplay. We perform a numerical analysis of this protocol in a measurement-driven Ising chain, which supports the scaling laws we put forward. The local measurement process generally tends to suppress quantum correlations, even in the dynamic scaling limit. The power law of the decay of the quantum correlations turns out to be enhanced at the quantum transition.
Periodic driving has emerged as a powerful experimental tool to engineer physical properties of isolated, synthetic quantum systems. However, due to the lack of energy conservation and heating effects, non-trivial (e.g., topological) many-body states in periodically driven (Floquet) systems are generally metastable. Therefore it is necessary to find strategies for preparing long-lived many-body states in Floquet systems. We develop a theoretical framework for describing the dynamical preparation of states in Floquet systems by a slow turn-on of the drive. We find that the dynamics of the system is well approximated by the initial state evolving under a slowly varying effective Hamiltonian $H_{rm eff}^{(s)}(t)$, provided the ramp speed $s gg t_*^{-1} sim e^{-{mathcal{C} frac{omega}{J}}}$, the inverse of the characteristic heating time-scale in the Floquet system. At such ramp speeds, the heating effects due to the drive are exponentially suppressed. We compute the slowly varying effective Hamiltonian $H_{rm eff}^{(s)}(t)$, and show that at the end of the ramp it is identical to the effective Hamiltonian of the unramped Floquet system, up to small corrections of the order $O(s)$. Therefore, the system effectively undergoes a slow quench from $H_0$ to $H_{rm eff}$. As an application, we consider the passage of the slow quench through a quantum critical point (QCP), and estimate the energy absorbed due to the non-adiabatic passage through the QCP via a Kibble-Zurek mechanism. By minimizing the energy absorbed due to both the drive and the ramp, we find an optimal ramp speed $s_* sim t_*^{-z/({d+2z})}$ for which both heating effects are exponentially suppressed. Our results bridge the gap between the numerous proposals to obtain interesting systems via Floquet engineering, and the actual preparation of such systems in their effective ground states.
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur ates in isolated quantum systems under unitary dynamics. First, we rigorously prove the saturation of the entropy production in the long time regime, where a total system can be in a pure state. Second, we discuss the non-negativity of the entropy production at saturation, implying the second law of thermodynamics. This is based on the eigenstate thermalization hypothesis (ETH), which states that even a single energy eigenstate is thermal. We also numerically demonstrate that the entropy production saturates at a non-negative value even when the initial state of a heat bath is a single energy eigenstate. Our results reveal fundamental properties of the entropy production in isolated quantum systems at late times.
175 - A.Cuccoli , A.Fubini , V.Tognetti 1999
We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and dissipative quadratic forms. The underlying scheme is the pure-quantum self-consistent harmonic approximation (PQSCHA), equivalent to the variational approach by the Feynman-Jensen inequality with a suitable quadratic nonlocal trial action. A low-coupling approximation permits to get manageable PQSCHA expressions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipation. The application of the PQSCHA to a quantum phi4-chain with Drude-like dissipation shows nontrivial effects of dissipation, depending upon its strength and bandwidth.
182 - Eiki Iyoda , , Takahiro Sagawa 2017
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) th at becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of integrability of Hamiltonians; TMI can be negative or positive for both integrable and non-integrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by non-integrability. Furthermore, we calculate TMI in disordered systems such as many-body localized (MBL) systems and the Sachdev-Ye-Kitaev (SYK) model. We find that scrambling occurs but is slow in a MBL phase, while disorder in the SYK model does not make scrambling slower but makes it smoother.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا