ﻻ يوجد ملخص باللغة العربية
Xe{136} is used as the target medium for many experiments searching for bbnonu. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe{137} created by the capture of neutrons on Xe{136}. This isotope decays via beta decay with a half-life of 3.8 minutes and a Qb of $sim$4.16 MeV. This work proposes and explores the concept of adding a small percentage of He{3} to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe{137} activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
The solar neutrino experiment Borexino, which is located in the Gran Sasso underground laboratories, is in a unique position to study muon-induced backgrounds in an organic liquid scintillator. In this study, a large sample of cosmic muons is identif
The dynamics of the movement of gas is discussed for two-chambered polarized He-3 target cells of the sort that have been used successfully for many electron scattering experiments. A detailed analysis is presented showing that diffusion is a limitin
A wide variety of detection applications exploit the timing correlations that result from the slowing and eventual capture of neutrons. These include capture-gated neutron spectrometry, multiple neutron counting for fissile material detection and ide
The rare event search experiments using germanium detectors are performed in the underground laboratories to prevent cosmic rays. However, the cosmogenic activation of the cupreous detector components on the ground will generate long half-life radioi
Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keep