ترغب بنشر مسار تعليمي؟ اضغط هنا

Study on cosmogenic activation in copper for rare event search experiments

125   0   0.0 ( 0 )
 نشر من قبل Ze She
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rare event search experiments using germanium detectors are performed in the underground laboratories to prevent cosmic rays. However, the cosmogenic activation of the cupreous detector components on the ground will generate long half-life radioisotopes and contribute continually to the expected background level. We present a study on the cosmogenic activation of copper after 504 days of exposure at an altitude of 2469.4 m outside the China Jinping Underground Laboratory (CJPL). The specific activities of the cosmogenic nuclides produced in the copper bricks were measured using a low background germanium gamma-ray spectrometer at CJPL. The production rates at sea level, in units of nuclei/kg/day, are 18.6 pm 2.0 for Mn-54, 9.9 pm 1.3 for Co-56, 48.3 pm 5.5 for Co-57, 51.8 pm 2.5 for Co-58 and 39.7 pm 5.7 for Co-60, respectively. Given the expected exposure history of the germanium detectors, a Monte Carlo simulation is conducted to assess the cosmogenic background contributions of the detectors cupreous components.



قيم البحث

اقرأ أيضاً

The noble elements, argon and xenon, are frequently employed as the target and event detector for weakly interacting particles such as neutrinos and Dark Matter. For such rare processes, background radiation must be carefully minimized. Radon provide s one of the most significant contaminants since it is an inevitable product of trace amounts of natural uranium. To design a purification system for reducing such contamination, the adsorption characteristics of radon in nitrogen, argon, and xenon carrier gases on various types of charcoals with different adsorbing properties and intrinsic radioactive purities have been studied in the temperature range of 190-295 K at flow rates of 0.5 and 2 standard liters per minute. Essential performance parameters for the various charcoals include the average breakthrough times ($tau$), dynamic adsorption coefficients (k$_a$) and the number of theoretical stages (n). It is shown that the k$_a$-values for radon in nitrogen, argon, and xenon increase as the temperature of the charcoal traps decreases, and that they are significantly larger in nitrogen and argon than in xenon gas due to adsorption saturation effects. It is found that, unlike in xenon, the dynamic adsorption coefficients for radon in nitrogen and argon strictly obey the Arrhenius law. The experimental results strongly indicate that nitric acid etched Saratech is the best candidate among all used charcoal brands. It allows reducing total radon concentration in the LZ liquid Xe detector to meet the ultimate goal in the search for Dark Matter.
78 - J. L. Ma , Q. Yue , S. T. Lin 2018
A study on cosmogenic activation in germanium was carried out to evaluate the cosmogenic background level of natural and $^{70}$Ge depleted germanium detectors. The production rates of long-lived radionuclides were calculated with Geant4 and CRY. Res ults were validated by comparing the simulated and experimental spectra of CDEX-1B detector. Based on the validated codes, the cosmogenic background level was predicted for further tonne-scale CDEX experiment. The suppression of cosmogenic background level could be achieved by underground germanium crystal growth and high-purity germanium detector fabrication to reach the sensitivity requirement for direct detection of dark matter. With the low cosmogenic background, new physics channels, such as solar neutrino research and neutrinoless double-beta decay experiments, were opened and the corresponding simulations and evaluations were carried out.
We present the design and characterization of a large-area Cryogenic PhotoDetector (CPD) designed for active particle identification in rare event searches, such as neutrinoless double beta decay and dark matter experiments. The detector consists of a $45.6$ $mathrm{cm}^2$ surface area by 1-mm-thick $10.6$ $mathrm{g}$ Si wafer. It is instrumented with a distributed network of Quasiparticle-trap-assisted Electrothermal feedback Transition-edge sensors (QETs) with superconducting critical temperature $T_c=41.5$ $mathrm{mK}$ to measure athermal phonons released from interactions with photons. The detector is characterized and calibrated with a collimated $^{55}$Fe X-ray source incident on the center of the detector. The noise equivalent power is measured to be $1times 10^{-17}$ $mathrm{W}/sqrt{mathrm{Hz}}$ in a bandwidth of $2.7$ $mathrm{kHz}$. The baseline energy resolution is measured to be $sigma_E = 3.86 pm 0.04$ $(mathrm{stat.})^{+0.23}_{-0.00}$ $(mathrm{syst.})$ $mathrm{eV}$ (RMS). The detector also has an expected timing resolution of $sigma_t = 2.3$ $mumathrm{s}$ for $5$ $sigma_E$ events.
The production of $^{3}$H, $^{7}$Be, and $^{22}$Na by interactions of cosmic-ray particles with silicon can produce radioactive backgrounds in detectors used to search for rare events. Through controlled irradiation of silicon CCDs and wafers with a neutron beam that mimics the cosmic-ray neutron spectrum, followed by direct counting, we determined that the production rate from cosmic-ray neutrons at sea level is ($112 pm 24$) atoms/(kg day) for $^{3}$H, ($8.1 pm 1.9 $) atoms/(kg day) for $^{7}$Be, and ($43.0 pm 7.1 $) atoms/(kg day) for $^{22}$Na. Complementing these results with the current best estimates of activation cross sections for cosmic-ray particles other than neutrons, we obtain a total sea-level cosmic-ray production rate of ($124 pm 24$) atoms/(kg day) for $^{3}$H, ($9.4 pm 2.0 $) atoms/(kg day) for $^{7}$Be, and ($49.6 pm 7.3 $) atoms/(kg day) for $^{22}$Na. These measurements will help constrain background estimates and determine the maximum time that silicon-based detectors can remain unshielded during detector fabrication before cosmogenic backgrounds impact the sensitivity of next-generation rare-event searches.
Type 5A molecular sieves (MS) have been demonstrated to remove radon from SF$_6$ gas. This is important for ultra-sensitive SF$_6$ gas-based directional dark matter and related rare-event physics experiments, as radon can provide a source of unwanted background events. Unfortunately, commercially available sieves intrinsically emanate radon at levels not suitable for ultra-sensitive physics experiments. A method to produce a low radioactive MS has been developed in Nihon University (NU). In this work, we explore the feasibility of the NU-developed 5A type MS for use in such experiments. A comparison with a commercially available Sigma-Aldrich 5A type MS was made. The comparison was done by calculating a parameter indicating the amount of radon intrinsically emanated by the MS per unit radon captured from SF$_6$ gas. The measurements were made using a specially adapted DURRIDGE RAD7 radon detector. The NU-developed 5A MS emanated radon up to 61$pm$9$%$ less per radon captured (2.1$pm$0.1)$times 10^{-3}$, compared to the commercial Sigma-Aldrich MS (5.4$pm$0.4)$times 10^{-3}$, making it a better candidate for use in a radon filtration setup for future ultra-sensitive SF$_6$ gas based experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا