ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth

128   0   0.0 ( 0 )
 نشر من قبل Davide D'Angelo Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar neutrino experiment Borexino, which is located in the Gran Sasso underground laboratories, is in a unique position to study muon-induced backgrounds in an organic liquid scintillator. In this study, a large sample of cosmic muons is identified and tracked by a muon veto detector external to the liquid scintillator, and by the specific light patterns observed when muons cross the scintillator volume. The yield of muon-induced neutrons is found to be Yn =(3.10+-0.11)10-4 n/({mu} (g/cm2)). The distance profile between the parent muon track and the neutron capture point has the average value {lambda} = (81.5 +- 2.7)cm. Additionally the yields of a number of cosmogenic radioisotopes are measured for 12N, 12B, 8He, 9C, 9Li, 8B, 6He, 8Li, 11Be, 10C and 11C. All results are compared with Monte Carlo simulation predictions using the Fluka and Geant4 packages. General agreement between data and simulation is observed for the cosmogenic production yields with a few exceptions, the most prominent case being 11C yield for which both codes return about 50% lower values. The predicted {mu}-n distance profile and the neutron multiplicity distribution are found to be overall consistent with data.



قيم البحث

اقرأ أيضاً

183 - G. Bellini , J. Benziger , D. Bick 2012
We have measured the muon flux at the underground Gran Sasso National Laboratory (3800 m w.e.) to be (3.41 pm 0.01) times 10-4m-2s-1 using four years of Borexino data. A modulation of this signal is observed with a period of (366pm3) days and a relat ive amplitude of (1.29 pm 0.07)%. The measured phase is (179 pm 6) days, corresponding to a maximum on the 28th of June. Using the most complete atmospheric data models available, muon rate fluctuations are shown to be positively correlated with atmospheric temperature, with an effective coefficient {alpha}T = 0.93 pm 0.04. This result represents the most precise study of the muon flux modulation for this site and is in good agreement with expectations.
Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.
Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $^{11}$C decays outnumber solar $pep$ and CNO neutrino events by about ten to one. Highly efficient identification of this back ground is mandatory for these neutrino analyses. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $^{11}$C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012-2016) and III (2016-2020) data sets, with a $^{11}$C tagging efficiency of $sim$90 % and $sim$63-66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically $^{11}$C produced in high-multiplicity during major spallation events. Such $^{11}$C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of $sim$90 % but with a higher fraction of the exposure surviving, in the range of $sim$66-68 %.
Xe{136} is used as the target medium for many experiments searching for bbnonu. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background tha t is difficult to veto using muon tagging comes in the form of Xe{137} created by the capture of neutrons on Xe{136}. This isotope decays via beta decay with a half-life of 3.8 minutes and a Qb of $sim$4.16 MeV. This work proposes and explores the concept of adding a small percentage of He{3} to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe{137} activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
The high design luminosity of the SuperKEKB electron-positron collider is expected to result in challenging levels of beam-induced backgrounds in the interaction region. Properly simulating and mitigating these backgrounds is critical to the success of the Belle~II experiment. We report on measurements performed with a suite of dedicated beam background detectors, collectively known as BEAST II, during the so-called Phase 1 commissioning run of SuperKEKB in 2016, which involved operation of both the high energy ring (HER) of 7 GeV electrons as well as the low energy ring (LER) of 4 GeV positrons. We describe the BEAST II detector systems, the simulation of beam backgrounds, and the measurements performed. The measurements include standard ones of dose rates versus accelerator conditions, and more novel investigations, such as bunch-by-bunch measurements of injection backgrounds and measurements sensitive to the energy spectrum and angular distribution of fast neutrons. We observe beam-gas, Touschek, beam-dust, and injection backgrounds. We do not observe significant synchrotron radiation, as expected. Measured LER beam-gas backgrounds and Touschek backgrounds in both rings are slightly elevated, on average three times larger than the levels predicted by simulation. HER beam-gas backgrounds are on on average two orders of magnitude larger than predicted. Systematic uncertainties and channel-to-channel variations are large, so that these excesses constitute only 1-2 sigma level effects. Neutron background rates are higher than predicted and should be studied further. We will measure the remaining beam background processes, due to colliding beams, in the imminent commissioning Phase 2. These backgrounds are expected to be the most critical for Belle II, to the point of necessitating replacement of detector components during the Phase 3 (full-luminosity) operation of SuperKEB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا