ترغب بنشر مسار تعليمي؟ اضغط هنا

Developing an Augmented Reality Tourism App through User-Centred Design (Extended Version)

85   0   0.0 ( 0 )
 نشر من قبل Jason R.C. Nurse Dr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Augmented Reality (AR) bridges the gap between the physical and virtual world. Through overlaying graphics on natural environments, users can immerse themselves in a tailored environment. This offers great benefits to mobile tourism, where points of interest (POIs) can be annotated on a smartphone screen. While a variety of apps currently exist, usability issues can discourage users from embracing AR. Interfaces can become cluttered with icons, with POI occlusion posing further challenges. In this paper, we use user-centred design (UCD) to develop an AR tourism app. We solicit requirements through a synthesis of domain analysis, tourist observation and semi-structured interviews. Whereas previous user-centred work has designed mock-ups, we iteratively develop a full Android app. This includes overhead maps and route navigation, in addition to a detailed AR browser. The final product is evaluated by 20 users, who participate in a tourism task in a UK city. Users regard the system as usable and intuitive, and suggest the addition of further customisation. We finish by critically analysing the challenges of a user-centred methodology.

قيم البحث

اقرأ أيضاً

Through Augmented Reality (AR), virtual graphics can transform the physical world. This offers benefits to mobile tourism, where points of interest (POIs) can be annotated on a smartphone screen. Although several of these applications exist, usabilit y issues can discourage adoption. User-centred design (UCD) solicits frequent feedback, often contributing to usable products. While AR mock-ups have been constructed through UCD, we develop a novel and functional tourism app. We solicit requirements through a synthesis of domain analysis, tourist observation and semi-structured interviews. Through four rounds of iterative development, users test and refine the app. The final product, dubbed ToARist, is evaluated by 20 participants, who engage in a tourism task around a UK city. Users regard the system as usable, but find technical issues can disrupt AR. We finish by reflecting on our design and critiquing the challenges of a strict user-centred methodology.
Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and performs seamless tran sitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences by using MAR devices to provide universal accessibility to digital contents. Over the past 20 years, a number of MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discusses the latest studies on MAR through a top-down approach: 1) MAR applications; 2) MAR visualisation techniques adaptive to user mobility and contexts; 3) systematic evaluation of MAR frameworks including supported platforms and corresponding features such as tracking, feature extraction plus sensing capabilities; and 4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields, current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.
The regular K-10 curriculums often do not get the necessary of affordable technology involving interactive ways of teaching the prescribed curriculum with effective analytical skill building. In this paper, we present PlutoAR, a paper-based augmented reality interpreter which is scalable, affordable, portable and can be used as a platform for skill building for the kids. PlutoAR manages to overcome the conventional albeit non-interactive ways of teaching by incorporating augmented reality (AR) through an interactive toolkit to provide students with the best of both worlds. Students cut out paper tiles and place these tiles one by one on a larger paper surface called Launchpad and use the PlutoAR mobile application which runs on any Android device with a camera and uses augmented reality to output each step of the program like an interpreter. PlutoAR has inbuilt AR experiences like stories, maze solving using conditional loops, simple elementary mathematics and the intuition of gravity.
Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this pape r, we present a national-scale survey experiment ($N = 1963$) in the U.S. to investigate the effects of app design choices and individual differences on COVID-19 contact-tracing app adoption intentions. We found that individual differences such as prosocialness, COVID-19 risk perceptions, general privacy concerns, technology readiness, and demographic factors played a more important role than app design choices such as decentralized design vs. centralized design, location use, app providers, and the presentation of security risks. Certain app designs could exacerbate the different preferences in different sub-populations which may lead to an inequality of acceptance to certain app design choices (e.g., developed by state health authorities vs. a large tech company) among different groups of people (e.g., people living in rural areas vs. people living in urban areas). Our mediation analysis showed that ones perception of the public health benefits offered by the app and the adoption willingness of other people had a larger effect in explaining the observed effects of app design choices and individual differences than ones perception of the apps security and privacy risks. With these findings, we discuss practical implications on the design, marketing, and deployment of COVID-19 contact-tracing apps in the U.S.
Providing pedestrians and other vulnerable road users with a clear indication about a fully autonomous vehicle status and intentions is crucial to make them coexist. In the last few years, a variety of external interfaces have been proposed, leveragi ng different paradigms and technologies including vehicle-mounted devices (like LED panels), short-range on-road projections, and road infrastructure interfaces (e.g., special asphalts with embedded displays). These designs were experimented in different settings, using mockups, specially prepared vehicles, or virtual environments, with heterogeneous evaluation metrics. Promising interfaces based on Augmented Reality (AR) have been proposed too, but their usability and effectiveness have not been tested yet. This paper aims to complement such body of literature by presenting a comparison of state-of-the-art interfaces and new designs under common conditions. To this aim, an immersive Virtual Reality-based simulation was developed, recreating a well-known scenario represented by pedestrians crossing in urban environments under non-regulated conditions. A user study was then performed to investigate the various dimensions of vehicle-to-pedestrian interaction leveraging objective and subjective metrics. Even though no interface clearly stood out over all the considered dimensions, one of the AR designs achieved state-of-the-art results in terms of safety and trust, at the cost of higher cognitive effort and lower intuitiveness compared to LED panels showing anthropomorphic features. Together with rankings on the various dimensions, indications about advantages and drawbacks of the various alternatives that emerged from this study could provide important information for next developments in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا