ترغب بنشر مسار تعليمي؟ اضغط هنا

What Makes People Install a COVID-19 Contact-Tracing App? Understanding the Influence of App Design and Individual Difference on Contact-Tracing App Adoption Intention

68   0   0.0 ( 0 )
 نشر من قبل Tianshi Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this paper, we present a national-scale survey experiment ($N = 1963$) in the U.S. to investigate the effects of app design choices and individual differences on COVID-19 contact-tracing app adoption intentions. We found that individual differences such as prosocialness, COVID-19 risk perceptions, general privacy concerns, technology readiness, and demographic factors played a more important role than app design choices such as decentralized design vs. centralized design, location use, app providers, and the presentation of security risks. Certain app designs could exacerbate the different preferences in different sub-populations which may lead to an inequality of acceptance to certain app design choices (e.g., developed by state health authorities vs. a large tech company) among different groups of people (e.g., people living in rural areas vs. people living in urban areas). Our mediation analysis showed that ones perception of the public health benefits offered by the app and the adoption willingness of other people had a larger effect in explaining the observed effects of app design choices and individual differences than ones perception of the apps security and privacy risks. With these findings, we discuss practical implications on the design, marketing, and deployment of COVID-19 contact-tracing apps in the U.S.

قيم البحث

اقرأ أيضاً

Contact tracing apps are powerful software tools that can help control the spread of COVID-19. In this article, we evaluated 53 COVID-19 contact tracing apps found on the Google Play Store in terms of their usage, rating, access permission, and user privacy. For each app included in the study, we identified the country of origin, number of downloads, and access permissions to further understand the attributes and ratings of the apps. Our results show that contact tracing apps had low overall ratings and nearly 40% of the included apps were requesting dangerous access permission including access to storage, media files, and camera permissions. We also found that user adoption rates were inversely correlated to access permission requirements. To the best of our knowledge, our article summarizes the most extensive collection of contact tracing apps for COVID-19. We recommend that future contact tracing apps should be more transparent in permission requirements and should provide justification for permissions requested to preserve the app users privacy.
65 - Lucy Simko 2020
There is growing interest in technology-enabled contact tracing, the process of identifying potentially infected COVID-19 patients by notifying all recent contacts of an infected person. Governments, technology companies, and research groups alike re cognize the potential for smartphones, IoT devices, and wearable technology to automatically track close contacts and identify prior contacts in the event of an individuals positive test. However, there is currently significant public discussion about the tensions between effective technology-based contact tracing and the privacy of individuals. To inform this discussion, we present the results of a sequence of online surveys focused on contact tracing and privacy, each with 100 participants. Our first surveys were on April 1 and 3, and we report primarily on those first two surveys, though we present initial findings from later survey dates as well. Our results present the diversity of public opinion and can inform the public discussion on whether and how to leverage technology to reduce the spread of COVID-19. We are continuing to conduct longitudinal measurements, and will update this report over time; citations to this version of the report should reference Report Version 1.0, May 8, 2020. NOTE: As of December 4, 2020, this report has been superseded by Report Version 2.0, found at arXiv:2012.01553. Please read and cite Report Version 2.0 instead.
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as enterin g into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some rem ain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large.
The 2019 Coronavirus disease (COVID-19) pandemic, caused by a quick dissemination of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has had a deep impact worldwide, both in terms of the loss of human life and the economic and socia l disruption. The use of digital technologies has been seen as an important effort to combat the pandemic and one of such technologies is contact tracing applications. These applications were successfully employed to face other infectious diseases, thus they have been used during the current pandemic. However, the use of contact tracing poses several privacy concerns since it is necessary to store and process data which can lead to the user/device identification as well as location and behavior tracking. These concerns are even more relevant when considering nationwide implementations since they can lead to mass surveillance by authoritarian governments. Despite the restrictions imposed by data protection laws from several countries, there are still doubts on the preservation of the privacy of the users. In this article, we analyze the privacy features in national contact tracing COVID-19 applications considering their intrinsic characteristics. As a case study, we discuss in more depth the Brazilian COVID-19 application Coronavirus-SUS, since Brazil is one of the most impacted countries by the current pandemic. Finally, as we believe contact tracing will continue to be employed as part of the strategy for the current and potential future pandemics, we present key research challenges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا