ترغب بنشر مسار تعليمي؟ اضغط هنا

ToARist: An Augmented Reality Tourism App created through User-Centred Design

57   0   0.0 ( 0 )
 نشر من قبل Meredydd Williams
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Through Augmented Reality (AR), virtual graphics can transform the physical world. This offers benefits to mobile tourism, where points of interest (POIs) can be annotated on a smartphone screen. Although several of these applications exist, usability issues can discourage adoption. User-centred design (UCD) solicits frequent feedback, often contributing to usable products. While AR mock-ups have been constructed through UCD, we develop a novel and functional tourism app. We solicit requirements through a synthesis of domain analysis, tourist observation and semi-structured interviews. Through four rounds of iterative development, users test and refine the app. The final product, dubbed ToARist, is evaluated by 20 participants, who engage in a tourism task around a UK city. Users regard the system as usable, but find technical issues can disrupt AR. We finish by reflecting on our design and critiquing the challenges of a strict user-centred methodology.

قيم البحث

اقرأ أيضاً

Augmented Reality (AR) bridges the gap between the physical and virtual world. Through overlaying graphics on natural environments, users can immerse themselves in a tailored environment. This offers great benefits to mobile tourism, where points of interest (POIs) can be annotated on a smartphone screen. While a variety of apps currently exist, usability issues can discourage users from embracing AR. Interfaces can become cluttered with icons, with POI occlusion posing further challenges. In this paper, we use user-centred design (UCD) to develop an AR tourism app. We solicit requirements through a synthesis of domain analysis, tourist observation and semi-structured interviews. Whereas previous user-centred work has designed mock-ups, we iteratively develop a full Android app. This includes overhead maps and route navigation, in addition to a detailed AR browser. The final product is evaluated by 20 users, who participate in a tourism task in a UK city. Users regard the system as usable and intuitive, and suggest the addition of further customisation. We finish by critically analysing the challenges of a user-centred methodology.
Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and performs seamless tran sitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences by using MAR devices to provide universal accessibility to digital contents. Over the past 20 years, a number of MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discusses the latest studies on MAR through a top-down approach: 1) MAR applications; 2) MAR visualisation techniques adaptive to user mobility and contexts; 3) systematic evaluation of MAR frameworks including supported platforms and corresponding features such as tracking, feature extraction plus sensing capabilities; and 4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields, current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.
We present an early study designed to analyze how city planning and the health of senior citizens can benefit from the use of augmented reality (AR) using Microsofts HoloLens. We also explore whether AR and VR can be used to help city planners receiv e real-time feedback from citizens, such as the elderly, on virtual plans, allowing for informed decisions to be made before any construction begins.
We introduce Blocks, a mobile application that enables people to co-create AR structures that persist in the physical environment. Using Blocks, end users can collaborate synchronously or asynchronously, whether they are colocated or remote. Addition ally, the AR structures can be tied to a physical location or can be accessed from anywhere. We evaluated how people used Blocks through a series of lab and field deployment studies with over 160 participants, and explored the interplay between two collaborative dimensions: space and time. We found that participants preferred creating structures synchronously with colocated collaborators. Additionally, they were most active when they created structures that were not restricted by time or place. Unlike most of todays AR experiences, which focus on content consumption, this work outlines new design opportunities for persistent and collaborative AR experiences that empower anyone to collaborate and create AR content.
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations while keeping tracks of all evacuees locations. A population density map, obtained on-t he-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building. To efficiently search the evacuation route among all destinations, a variant of A* algorithm is devised to obtain the optimal solution in a single pass. In a series of simulated studies, we show that the proposed algorithm is more computationally optimized compared to classic path planning algorithms; it generates a more time-efficient evacuation route for each individual that minimizes the overall congestion. A complete system using AR devices is implemented for a pilot study in real-world environments, demonstrating the efficacy of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا