ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Spectrum in General Free Fermionic Systems

82   0   0.0 ( 0 )
 نشر من قبل Eldad Bettelheim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistical mechanics characterization of a finite subsystem embedded in an infinite system is a fundamental question of quantum physics. Nevertheless, a full closed form { for all required entropic measures} does not exist in the general case even for free systems when the finite system in question is composed of several disjoint intervals. Here we develop a mathematical framework based on the Riemann-Hilbert approach to treat this problem in the one-dimensional case where the finite system is composed of two disjoint intervals and in the thermodynamic limit (both intervals and the space between them contains an infinite number of lattice sites and the result is given as a thermodynamic expansion). To demonstrate the usefulness of our method, we compute the change in the entanglement and negativity namely the spectrum of eigenvalues of the reduced density matrix with our without time reversal of one of the intervals. We do this in the case that the distance between the intervals is much larger than their size. The method we use can be easily applied to compute any power in an expansion in the ratio of the distance between the intervals to their size. {We expect these results to provide the necessary mathematical apparatus to address relevant questions in concrete physical scenarios, namely the structure and extent of quantum correlations in fermionic systems subject to local environment.



قيم البحث

اقرأ أيضاً

234 - M. Mosonyi , F. Hiai , T. Ogawa 2008
We apply the recent results of F. Hiai, M. Mosonyi and T. Ogawa [arXiv:0707.2020, to appear in J. Math. Phys.] to the asymptotic hypothesis testing problem of locally faithful shift-invariant quasi-free states on a CAR algebra. We use a multivariate extension of Szegos theorem to show the existence of the mean Chernoff and Hoeffding bounds and the mean relative entropy, and show that these quantities arise as the optimal error exponents in suitable settings.
We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy betwe en the exact ground state and the set of fermionic gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single particle states $k$ of positive quasimomenta and their time reversed partners $bar{k}$. In contrast, the entanglement associated with the reduced density matrix of four single particle modes $k,bar{k}$, $k,bar{k}$, which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states $k,k$ close to the fermi level and becoming small in the strong coupling regime. In the latter such reduced state exhibits, instead, a finite mutual information and quantum discord. And while the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.
We propose a unified mathematical scheme, based on a classical tensor isomorphism, for characterizing entanglement that works for pure states of multipartite systems of any number of particles. The degree of entanglement is indicated by a set of abso lute values of the determinants for each subspace of the multipartite systems. Unlike other schemes, our scheme provides indication of the degrees of entanglement when the qubits are measured or lost successively, and leads naturally to the necessary and sufficient conditions for multipartite pure states to be separable. For systems with a large number of particles, a rougher indication of the degree of entanglement is provided by the set of mean values of the determinantal values for each subspace of the multipartite systems.
We consider a non-interacting bipartite quantum system $mathcal H_S^Aotimesmathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartit e system. The interactions are made so that the pieces of environment interact first with $mathcal H_S^A$ and then with $mathcal H_S^B$. Even though the bipartite systems are not interacting, the interactions with the environment create an entanglement. We show that, in the limit of short interaction times, the environment creates an effective interaction Hamiltonian between the two systems. This interaction Hamiltonian is explicitly computed and we show that it keeps track of the order of the successive interactions with $mathcal H_S^A$ and $mathcal H_S^B$. Particular physical models are studied, where the evolution of the entanglement can be explicitly computed. We also show the property of return of equilibrium and thermalization for a family of examples.
In this paper, we study the bipartite entanglement of spin coherent states in the case of pure and mixed states. By a proper choice of the subsystem spins, the entanglement for large class of quantum systems is investigated. We generalize the result to the case of bipartite mixed states using a simplified expression of concurrence in Wootters measure of the bipartite entanglement. It is found that in some cases, the maximal entanglement of mixed states in the context of $su(2)$ algebra can be detected. Our observations may have important implications in exploiting these states in quantum information theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا