ترغب بنشر مسار تعليمي؟ اضغط هنا

The fractal cylinder process: existence and connectivity phase transition

80   0   0.0 ( 0 )
 نشر من قبل Olof Elias
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a semi-scale invariant version of the Poisson cylinder model which in a natural way induces a random fractal set. We show that this random fractal exhibits an existence phase transition for any dimension $dgeq 2,$ and a connectivity phase transition whenever $dgeq 4.$ We determine the exact value of the critical point of the existence phase transition, and we show that the fractal set is almost surely empty at this critical point. A key ingredient when analysing the connectivity phase transition is to consider a restriction of the full process onto a subspace. We show that this restriction results in a fractal ellipsoid model which we describe in detail, as it is key to obtaining our main results. In addition we also determine the almost sure Hausdorff dimension of the fractal set.



قيم البحث

اقرأ أيضاً

In this paper we study the existence phase transition of the random fractal ball model and the random fractal box model. We show that both of these are in the empty phase at the critical point of this phase transition.
In this paper we deal with the classical problem of random cover times. We investigate the distribution of the time it takes for a Poisson process of cylinders to cover a set $A subset mathbb{R}^d.$ This Poisson process of cylinders is invariant unde r rotations, reflections and translations, and in addition we add a time component so that cylinders are raining from the sky at unit rate. Our main results concerns the asymptotic of this cover time as the set $A$ grows. If the set $A$ is discrete and well separated, we show convergence of the cover time to a Gumbel distribution. If instead $A$ has positive box dimension (and satisfies a weak additional assumption), we find the correct rate of convergence.
148 - Leonardo T. Rolla 2008
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then sto pping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the models parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.
An important property of Kingmans coalescent is that, starting from a state with an infinite number of blocks, over any positive time horizon, it transitions into an almost surely finite number of blocks. This is known as `coming down from infinity. Moreover, of the many different (exchangeable) stochastic coalescent models, Kingmans coalescent is the `fastest to come down from infinity. In this article we study what happens when we counteract this `fastest coalescent with the action of an extreme form of fragmentation. We augment Kingmans coalescent, where any two blocks merge at rate $c>0$, with a fragmentation mechanism where each block fragments at constant rate, $lambda>0$, into its constituent elements. We prove that there exists a phase transition at $lambda=c/2$, between regimes where the resulting `fast fragmentation-coalescence process is able to come down from infinity or not. In the case that $lambda<c/2$ we develop an excursion theory for the fast fragmentation-coalescence process out of which a number of interesting quantities can be computed explicitly.
This paper is studying the critical regime of the planar random-cluster model on $mathbb Z^2$ with cluster-weight $qin[1,4)$. More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their extremal lengths. They imply in particular that any fractal boundary is touched by macroscopic clusters, uniformly in its roughness or the configuration on said boundary. Additionally, they imply that any sub-sequential scaling limit of the collection of interfaces between primal and dual clusters is made of loops that are non-simple. We also obtain a number of properties of so-called arm-events: three universal critical exponents (two arms in the half-plane, three arms in the half-plane and five arms in the bulk), quasi-multiplicativity and well-separation properties (even when arms are not alternating between primal and dual), and the fact that the four-arm exponent is strictly smaller than 2. These results were previously known only for Bernoulli percolation ($q = 1$) and the FK-Ising model ($q = 2$). Finally, we prove new bounds on the one, two and four arms exponents for $qin[1,2]$. These improve the previously known bounds, even for Bernoulli percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا