In this paper we study the existence phase transition of the random fractal ball model and the random fractal box model. We show that both of these are in the empty phase at the critical point of this phase transition.
We consider a semi-scale invariant version of the Poisson cylinder model which in a natural way induces a random fractal set. We show that this random fractal exhibits an existence phase transition for any dimension $dgeq 2,$ and a connectivity phase
transition whenever $dgeq 4.$ We determine the exact value of the critical point of the existence phase transition, and we show that the fractal set is almost surely empty at this critical point. A key ingredient when analysing the connectivity phase transition is to consider a restriction of the full process onto a subspace. We show that this restriction results in a fractal ellipsoid model which we describe in detail, as it is key to obtaining our main results. In addition we also determine the almost sure Hausdorff dimension of the fractal set.
In this paper, we construct a new family of random series defined on $R^D$, indexed by one scaling parameter and two Hurst-like exponents. The model is close to Takagi-Knopp functions, save for the fact that the underlying partitions of $R^D$ are not
the usual dyadic meshes but random Voronoi tessellations generated by Poisson point processes. This approach leads us to a continuous function whose random graph is shown to be fractal with explicit and equal box and Hausdorff dimensions. The proof of this main result is based on several new distributional properties of the Poisson-Voronoi tessellation on the one hand, an estimate of the oscillations of the function coupled with an application of a Frostman-type lemma on the other hand. Finally, we introduce two related models and provide in particular a box-dimension calculation for a derived deterministic Takagi-Knopp series with hexagonal bases.
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then sto
pping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the models parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.
This paper is studying the critical regime of the planar random-cluster model on $mathbb Z^2$ with cluster-weight $qin[1,4)$. More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their
extremal lengths. They imply in particular that any fractal boundary is touched by macroscopic clusters, uniformly in its roughness or the configuration on said boundary. Additionally, they imply that any sub-sequential scaling limit of the collection of interfaces between primal and dual clusters is made of loops that are non-simple. We also obtain a number of properties of so-called arm-events: three universal critical exponents (two arms in the half-plane, three arms in the half-plane and five arms in the bulk), quasi-multiplicativity and well-separation properties (even when arms are not alternating between primal and dual), and the fact that the four-arm exponent is strictly smaller than 2. These results were previously known only for Bernoulli percolation ($q = 1$) and the FK-Ising model ($q = 2$). Finally, we prove new bounds on the one, two and four arms exponents for $qin[1,2]$. These improve the previously known bounds, even for Bernoulli percolation.
In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we cal
l by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.