ﻻ يوجد ملخص باللغة العربية
An important property of Kingmans coalescent is that, starting from a state with an infinite number of blocks, over any positive time horizon, it transitions into an almost surely finite number of blocks. This is known as `coming down from infinity. Moreover, of the many different (exchangeable) stochastic coalescent models, Kingmans coalescent is the `fastest to come down from infinity. In this article we study what happens when we counteract this `fastest coalescent with the action of an extreme form of fragmentation. We augment Kingmans coalescent, where any two blocks merge at rate $c>0$, with a fragmentation mechanism where each block fragments at constant rate, $lambda>0$, into its constituent elements. We prove that there exists a phase transition at $lambda=c/2$, between regimes where the resulting `fast fragmentation-coalescence process is able to come down from infinity or not. In the case that $lambda<c/2$ we develop an excursion theory for the fast fragmentation-coalescence process out of which a number of interesting quantities can be computed explicitly.
For $alpha >0$, the $alpha$-Lipschitz minorant of a function $f : mathbb{R} rightarrow mathbb{R}$ is the greatest function $m : mathbb{R} rightarrow mathbb{R}$ such that $m leq f$ and $vert m(s) - m(t) vert leq alpha vert s-t vert$ for all $s,t in ma
We show that in homogeneous fragmentation processes the largest fragment at time $t$ has size $e^{-t Phi(bar{p})}t^{-frac32 (log Phi)(bar{p})+o(1)},$ where $Phi$ is the Levy exponent of the fragmentation process, and $bar{p}$ is the unique solution o
We show the result that is stated in the title of the paper, which has consequences about decomposition of Brownian loop-soup clusters in two dimensions.
Growth-fragmentation processes describe the evolution of systems in which cells grow slowly and fragment suddenly. Despite originating as a way to describe biological phenomena, they have recently been found to describe the lengths of certain curves
We consider a semi-scale invariant version of the Poisson cylinder model which in a natural way induces a random fractal set. We show that this random fractal exhibits an existence phase transition for any dimension $dgeq 2,$ and a connectivity phase