ﻻ يوجد ملخص باللغة العربية
State preparation and measurement (SPAM) errors limit the performance of near-term quantum computers and their potential for practical application. SPAM errors are partly correctable after a calibration step that requires, for a complete implementation on a register of $n$ qubits, $2^n$ additional measurements. Here we introduce an approximate but efficient method for multiqubit SPAM error characterization and mitigation requiring the classical processing of $2^n ! times 2^n$ matrices, but only $O(4^k n^2)$ measurements, where $k=O(1)$ is the number of qubits in a correlation volume. We demonstrate and validate the technique using an IBM Q processor on registers of 4 and 8 superconducting qubits.
Several techniques have been recently introduced to mitigate errors in near-term quantum computers without the overhead required by quantum error correcting codes. While most of the focus has been on gate errors, measurement errors are significantly
State preparation and measurement (SPAM) errors limit the performance of many gate-based quantum computing architecures, but are partly correctable after a calibration step that requires, for an exact implementation on a register of $n$ qubits, $2^n$
We study the performance of quantum error correction codes(QECCs) under the detection-induced coherent error due to the imperfectness of practical implementations of stabilizer measurements, after running a quantum circuit. Considering the most promi
The surface code is designed to suppress errors in quantum computing hardware and currently offers the most believable pathway to large-scale quantum computation. The surface code requires a 2-D array of nearest-neighbor coupled qubits that are capab
We review an experimental technique used to correct state preparation and measurement errors on gate-based quantum computers, and discuss its rigorous justification. Within a specific biased quantum measurement model, we prove that nonideal measureme