ﻻ يوجد ملخص باللغة العربية
We review an experimental technique used to correct state preparation and measurement errors on gate-based quantum computers, and discuss its rigorous justification. Within a specific biased quantum measurement model, we prove that nonideal measurement of an arbitrary $n$-qubit state is equivalent to ideal projective measurement followed by a classical Markov process $Gamma$ acting on the output probability distribution. Measurement errors can be removed, with rigorous justification, if $Gamma$ can be learned and inverted. We show how to obtain $Gamma$ from gate set tomography (R. Blume-Kohout et al., arXiv:1310.4492) and apply the error correction technique to single IBM Q superconducting qubits.
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive infor
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers. This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first demonstrate the successful perfo
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
We critically examine the internal consistency of a set of minimal assumptions entering the theory of fault-tolerant quantum error correction for Markovian noise. These assumptions are: fast gates, a constant supply of fresh and cold ancillas, and a
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performanc