ترغب بنشر مسار تعليمي؟ اضغط هنا

Effectively Trainable Semi-Quantum Restricted Boltzmann Machine

81   0   0.0 ( 0 )
 نشر من قبل Yana Lyakhova
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel quantum model for the restricted Boltzmann machine (RBM), in which the visible units remain classical whereas the hidden units are quantized as noninteracting fermions. The free motion of the fermions is parametrically coupled to the classical signal of the visible units. This model possesses a quantum behaviour such as coherences between the hidden units. Numerical experiments show that this fact makes it more powerful than the classical RBM with the same number of hidden units. At the same time, a significant advantage of the proposed model over the other approaches to the Quantum Boltzmann Machine (QBM) is that it is exactly solvable and efficiently trainable on a classical computer: there is a closed expression for the log-likelihood gradient with respect to its parameters. This fact makes it interesting not only as a model of a hypothetical quantum simulator, but also as a quantum-inspired classical machine-learning algorithm.



قيم البحث

اقرأ أيضاً

Restricted Boltzmann machines are undirected neural networks which have been shown to be effective in many applications, including serving as initializations for training deep multi-layer neural networks. One of the main reasons for their success is the existence of efficient and practical stochastic algorithms, such as contrastive divergence, for unsupervised training. We propose an alternative deterministic iterative procedure based on an improved mean field method from statistical physics known as the Thouless-Anderson-Palmer approach. We demonstrate that our algorithm provides performance equal to, and sometimes superior to, persistent contrastive divergence, while also providing a clear and easy to evaluate objective function. We believe that this strategy can be easily generalized to other models as well as to more accurate higher-order approximations, paving the way for systematic improvements in training Boltzmann machines with hidden units.
The search for novel entangled phases of matter has lead to the recent discovery of a new class of ``entanglement transitions, exemplified by random tensor networks and monitored quantum circuits. Most known examples can be understood as some classic al ordering transitions in an underlying statistical mechanics model, where entanglement maps onto the free energy cost of inserting a domain wall. In this paper, we study the possibility of entanglement transitions driven by physics beyond such statistical mechanics mappings. Motivated by recent applications of neural network-inspired variational Ansatze, we investigate under what conditions on the variational parameters these Ansatze can capture an entanglement transition. We study the entanglement scaling of short-range restricted Boltzmann machine (RBM) quantum states with random phases. For uncorrelated random phases, we analytically demonstrate the absence of an entanglement transition and reveal subtle finite size effects in finite size numerical simulations. Introducing phases with correlations decaying as $1/r^alpha$ in real space, we observe three regions with a different scaling of entanglement entropy depending on the exponent $alpha$. We study the nature of the transition between these regions, finding numerical evidence for critical behavior. Our work establishes the presence of long-range correlated phases in RBM-based wave functions as a required ingredient for entanglement transitions.
We present a real-world application that uses a quantum computer. Specifically, we train a RBM using QA for cybersecurity applications. The D-Wave 2000Q has been used to implement QA. RBMs are trained on the ISCX data, which is a benchmark dataset fo r cybersecurity. For comparison, RBMs are also trained using CD. CD is a commonly used method for RBM training. Our analysis of the ISCX data shows that the dataset is imbalanced. We present two different schemes to balance the training dataset before feeding it to a classifier. The first scheme is based on the undersampling of benign instances. The imbalanced training dataset is divided into five sub-datasets that are trained separately. A majority voting is then performed to get the result. Our results show the majority vote increases the classification accuracy up from 90.24% to 95.68%, in the case of CD. For the case of QA, the classification accuracy increases from 74.14% to 80.04%. In the second scheme, a RBM is used to generate synthetic data to balance the training dataset. We show that both QA and CD-trained RBM can be used to generate useful synthetic data. Balanced training data is used to evaluate several classifiers. Among the classifiers investigated, K-Nearest Neighbor (KNN) and Neural Network (NN) perform better than other classifiers. They both show an accuracy of 93%. Our results show a proof-of-concept that a QA-based RBM can be trained on a 64-bit binary dataset. The illustrative example suggests the possibility to migrate many practical classification problems to QA-based techniques. Further, we show that synthetic data generated from a RBM can be used to balance the original dataset.
Neural-Network Quantum State (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the ground state of spin lattices and the electronic structures of small molecules in quantum devices. Despite these progresses, significant challenges remain with the RBM-NQS based quantum simulations. In this work, we present a state-preparation protocol to generate a specific set of complex-valued RBM-NQS, that we name the unitary-coupled RBM-NQS, in quantum circuits. This is a crucial advancement as all prior works deal exclusively with real-valued RBM-NQS for quantum algorithms. With this novel scheme, we achieve (1) modeling complex-valued wave functions, (2) using as few as one ancilla qubit to simulate $M$ hidden spins in an RBM architecture, and (3) avoiding post-selections to improve scalability.
101 - Clement Roussel 2021
Restricted Boltzmann Machines (RBM) are bi-layer neural networks used for the unsupervised learning of model distributions from data. The bipartite architecture of RBM naturally defines an elegant sampling procedure, called Alternating Gibbs Sampling (AGS), where the configurations of the latent-variable layer are sampled conditional to the data-variable layer, and vice versa. We study here the performance of AGS on several analytically tractable models borrowed from statistical mechanics. We show that standard AGS is not more efficient than classical Metropolis-Hastings (MH) sampling of the effective energy landscape defined on the data layer. However, RBM can identify meaningful representations of training data in their latent space. Furthermore, using these representations and combining Gibbs sampling with the MH algorithm in the latent space can enhance the sampling performance of the RBM when the hidden units encode weakly dependent features of the data. We illustrate our findings on three datasets: Bars and Stripes and MNIST, well known in machine learning, and the so-called Lattice Proteins, introduced in theoretical biology to study the sequence-to-structure mapping in proteins.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا