ﻻ يوجد ملخص باللغة العربية
Restricted Boltzmann machines are undirected neural networks which have been shown to be effective in many applications, including serving as initializations for training deep multi-layer neural networks. One of the main reasons for their success is the existence of efficient and practical stochastic algorithms, such as contrastive divergence, for unsupervised training. We propose an alternative deterministic iterative procedure based on an improved mean field method from statistical physics known as the Thouless-Anderson-Palmer approach. We demonstrate that our algorithm provides performance equal to, and sometimes superior to, persistent contrastive divergence, while also providing a clear and easy to evaluate objective function. We believe that this strategy can be easily generalized to other models as well as to more accurate higher-order approximations, paving the way for systematic improvements in training Boltzmann machines with hidden units.
The search for novel entangled phases of matter has lead to the recent discovery of a new class of ``entanglement transitions, exemplified by random tensor networks and monitored quantum circuits. Most known examples can be understood as some classic
Restricted Boltzmann Machines (RBM) are bi-layer neural networks used for the unsupervised learning of model distributions from data. The bipartite architecture of RBM naturally defines an elegant sampling procedure, called Alternating Gibbs Sampling
We propose a novel quantum model for the restricted Boltzmann machine (RBM), in which the visible units remain classical whereas the hidden units are quantized as noninteracting fermions. The free motion of the fermions is parametrically coupled to t
The restricted Boltzmann machine is a network of stochastic units with undirected interactions between pairs of visible and hidden units. This model was popularized as a building block of deep learning architectures and has continued to play an impor
Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use