ﻻ يوجد ملخص باللغة العربية
We present a qualitative search for ultra-fast outflows (UFOs) in excess variance spectra of radio-quiet active galactic nuclei (AGN). We analyse 42 sources from the Tombesi et al. (2010) spectroscopic UFO detection sample, and an additional 22 different sources from the Kara et al. (2016) variability sample. A total of 58 sources have sufficient observational data from XMM-Newton EPIC-pn and variability for an excess variance spectrum to be calculated. We examine these spectra for peaks corresponding to variable blue-shifted H- and He-like ion absorption lines from UFOs. We find good evidence for such outflows in 28% of the AGN sample and weak evidence in a further 31%, meaning that $sim$ 30-60% of the AGN sample hosts such UFOs. The mean and median blue-shifted velocity is found to be $sim$ 0.14c and 0.12c, respectively. Current variability methods allow for a fast, model-independent determination of UFOs, however, further work needs to be undertaken to better characterize the statistical significance of the peaks in these spectra by more rigorous modelling. Detecting good evidence for variable UFO lines in a large number of sources also lays the groundwork for detailed analysis of the variability timescales of the absorbers. This will allow us to probe their densities and hence distances from the central super-massive black hole.
One of the canonical physical properties of ultra-fast outflows (UFOs) seen in a diverse population of active galactic nuclei (AGNs) is its seemingly very broad width (i.e. $Delta v sim 10,000$ km~s$^{-1}$) , a feature often required for X-ray spectr
X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42
Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly
Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarl
Among a number of active galactic nuclei (AGNs) that drive ionized outflows in X-rays, a low-redshift (z = 0.184) quasar, PDS 456, is long known to exhibit one of the exemplary ultra-fast outflows (UFOs). However, the physical process of acceleration