ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Nature of Magnetically-Driven Ultra-Fast Outflows

145   0   0.0 ( 0 )
 نشر من قبل Keigo Fukumura
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among a number of active galactic nuclei (AGNs) that drive ionized outflows in X-rays, a low-redshift (z = 0.184) quasar, PDS 456, is long known to exhibit one of the exemplary ultra-fast outflows (UFOs). However, the physical process of acceleration mechanism is yet to be definitively constrained. In this work, we model the variations of the Fe K UFO properties in PDS 456 over many epochs in X-ray observations in the context of magnetohydrodynamic (MHD) accretion-disk winds employed in our earlier studies of similar X-ray absorbers. We applied the model to the 2013/2014 XMM-Newton/NuSTAR spectra to determine the UFOs condition; namely, velocity, ionization parameter, column density and equivalent width (EW). Under some provisions on the dependence of X-ray luminosity on the accretion rate applicable to near-Eddington state, our photoionization calculations, coupled to a 2.5-dimensional MHD-driven wind model, can further reproduce the observed correlations of the UFO velocity and the anti-correlation of its EW with X-ray strength of PDS 456. This work demonstrates that UFOs, even without radiative pressure, can be driven as an extreme case purely by magnetic interaction while also producing the observed spectrum and correlations.



قيم البحث

اقرأ أيضاً

We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, pg. We find, through identifying the detected features with Fe K$alpha$ transitions, that the absorber has a characteristic ionization parameter of $log (xi_c [erg~cm~s$^{-1}$]) simeq 5-6$ and a column density on the order of $N_H simeq 10^{23}$ cm$^{-2}$, outflowing at a characteristic velocity of $v_c/c simeq 0.1-0.2$ (where $c$ is the speed of light). The best-fit model favors its radial location at $r_c simeq 200 R_o$ ($R_o$ is the black hole innermost stable circular orbit), with an inner wind truncation radius at $R_{rm t} simeq 30 R_o$. The overall K-shell feature in the data is suggested to be dominated by fexxv with very little contribution from fexxvi and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including pg.
Substantial evidence in the last few decades suggests that outflows from supermassive black holes (SMBH) may play a significant role in the evolution of galaxies.Large-scale outflows known as warm absorbers (WA) and fast disk winds known as ultra-fas t outflows (UFO) are commonly found in the spectra of many Seyfert galaxies and quasars, and a correlation has been suggested between them. Recent detections of low ionization and low column density outflows, but with a high velocity comparable to UFOs, challenge such initial possible correlations. Observations of UFOs in AGN indicate that their energetics may be enough to have an impact on the interstellar medium (ISM). However, observational evidence of the interaction between the inner high-ionization outflow and the ISM is still missing. We present here the spectral analysis of 12 XMM-Newton/EPIC archival observations of the quasar PG 1114+445, aimed at studying the complex outflowing nature of its absorbers. Our analysis revealed the presence of three absorbing structures. We find a WA with velocity $vsim530$ km s$^{-1}$, ionization $logxi/text{erg cm s}^{-1}sim0.35,$ and column density $log N_text{H}/text{cm}^{-2}sim22$, and a UFO with $v_text{out}sim0.145c$, $logxi/text{erg cm s}^{-1}sim4$, and $log N_text{H}/text{cm}^{-2}sim23$. We also find an additional absorber in the soft X-rays ($E<2$ keV) with velocity comparable to that of the UFO ($v_text{out}sim0.120c$), but ionization ($logxi/text{erg cm s}^{-1}sim0.5$) and column density ($log N_text{H}/text{cm}^{-2}sim21.5$) comparable with those of the WA. The ionization, velocity, and variability of the three absorbers indicate an origin in a multiphase and multiscale outflow, consistent with entrainment of the clumpy ISM by an inner UFO moving at $sim15%$ the speed of light, producing an entrained ultra-fast outflow (E-UFO).
129 - F. Tombesi 2014
Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarl y to the ultra-fast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud AGNs observed with XMM-Newton and Suzaku. The sample is drawn from the Swift BAT 58-month catalog and blazars are excluded. X-ray bright FR II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27% of the sources. However, correcting for the number of spectra with insufficient signal-to-noise, we can estimate that the incidence of UFOs is this sample of radio-loud AGNs is likely in the range f=(50+/-20)%. A photo-ionization modeling of the absorption lines with XSTAR allows to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between v_out<1,000 km s^-1 and v_out~0.4c, with mean and median values of v_out~0.133c and v_out~0.117c, respectively. The material is highly ionized, with an average ionization parameter of logxi~4.5 erg s^-1 cm, and the column densities are larger than N_H > 10^22 cm^-2. Overall, these characteristics are consistent with the presence of complex accretion disk winds in a significant fraction of radio-loud AGNs and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
438 - F. Tombesi 2012
X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the range logxi~3-6 erg s^{-1} cm, and also the associated column densities are large, in the interval ~10^{22}-10^{24} cm^{-2}. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets and their study can provide important clues on the connection between accretion disks, winds and jets.
We present a qualitative search for ultra-fast outflows (UFOs) in excess variance spectra of radio-quiet active galactic nuclei (AGN). We analyse 42 sources from the Tombesi et al. (2010) spectroscopic UFO detection sample, and an additional 22 diffe rent sources from the Kara et al. (2016) variability sample. A total of 58 sources have sufficient observational data from XMM-Newton EPIC-pn and variability for an excess variance spectrum to be calculated. We examine these spectra for peaks corresponding to variable blue-shifted H- and He-like ion absorption lines from UFOs. We find good evidence for such outflows in 28% of the AGN sample and weak evidence in a further 31%, meaning that $sim$ 30-60% of the AGN sample hosts such UFOs. The mean and median blue-shifted velocity is found to be $sim$ 0.14c and 0.12c, respectively. Current variability methods allow for a fast, model-independent determination of UFOs, however, further work needs to be undertaken to better characterize the statistical significance of the peaks in these spectra by more rigorous modelling. Detecting good evidence for variable UFO lines in a large number of sources also lays the groundwork for detailed analysis of the variability timescales of the absorbers. This will allow us to probe their densities and hence distances from the central super-massive black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا