ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of ultra-fast outflows in AGN: Monte-Carlo simulations of the wind in PDS 456

255   0   0.0 ( 0 )
 نشر من قبل Kouichi Hagino
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows onto high mass black holes, as observed.



قيم البحث

اقرأ أيضاً

Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$, as observed through observations of its blue-shifted iron K-sh ell absorption line profile. Here we present three new XMM-Newton observations of PDS 456; one in September 2018 where the quasar was bright and featureless, and two in September 2019, 22 days apart, occurring when the quasar was five times fainter and where strong blue-shifted lines from the wind were present. During the second September 2019 observation, three broad ($sigma=3000$ km s$^{-1}$) absorption lines were resolved in the high resolution RGS spectrum, which are identified with blue-shifted OVIII Ly$alpha$, NeIX He$alpha$ and NeX Ly$alpha$. The outflow velocity of this soft X-ray absorber was found to be $v/c=-0.258pm0.003$, fully consistent with iron K absorber with $v/c=-0.261pm0.007$. The ionization parameter and column density of the soft X-ray component ($logxi=3.4$, $N_{rm H}=2times10^{21}$ cm$^{-2}$) outflow was lower by about two orders of magnitude, when compared to the high ionization wind at iron K ($logxi=5$, $N_{rm H}=7times10^{23}$ cm$^{-2}$). Substantial variability was seen in the soft X-ray absorber between the 2019 observations, declining from $N_{rm H}=10^{23}$ cm$^{-2}$ to $N_{rm H}=10^{21}$ cm$^{-2}$ over 20 days, while the iron K component was remarkably stable. We conclude that the soft X-ray wind may originate from an inhomogeneous wind streamline passing across the line of sight and which due to its lower ionization, is located further from the black hole, on parsec scales, than the innermost disk wind.
PDS 456 is a nearby (z=0.184), luminous (L_bol ~10^47 erg/s) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant ab sorption features near 9 keV in the quasar rest--frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (~0.25c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (Nh>10^24cm^-2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of $4pi$ steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.
We present a newly discovered correlation between the wind outflow velocity and the X-ray luminosity in the luminous ($L_{rm bol}sim10^{47},rm erg,s^{-1}$) nearby ($z=0.184$) quasar PDS,456. All the contemporary XMM-Newton, NuSTAR and Suzaku observat ions from 2001--2014 were revisited and we find that the centroid energy of the blueshifted Fe,K absorption profile increases with luminosity. This translates into a correlation between the wind outflow velocity and the hard X-ray luminosity (between 7--30,keV) where we find that $v_{rm w}/c propto L_{7-30}^{gamma}$ where $gamma=0.22pm0.04$. We also show that this is consistent with a wind that is predominately radiatively driven, possibly resulting from the high Eddington ratio of PDS,456.
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$. Here we unveil a new, relativistic component of the wind throu gh hard X-ray observations with NuSTAR and XMM-Newton, obtained in March 2017 when the quasar was in a low flux state. This very fast wind component, with an outflow velocity of $-0.46pm0.02c$, is detected in the iron K band, in addition to the $-0.25c$ wind zone. The relativistic component may arise from the innermost disk wind, launched from close to the black hole at radius of $sim10$ gravitational radii. The opacity of the fast wind also increases during a possible obscuration event lasting for 50 ks. We suggest that the very fast wind may only be apparent during the lowest X-ray flux states of PDS 456, becoming overly ionized as the luminosity increases. Overall, the total wind power may even approach the Eddington value.
158 - L. Harer , M. L. Parker , A. Joyce 2020
We present an improved model for excess variance spectra describing ultra-fast outflows and successfully apply it to the luminous (L ~ 10^47 erg/s) low-redshift (z = 0.184) quasar PDS 456. The model is able to account well for the broadening of the s pike-like features of these outflows in the excess variance spectrum of PDS 456, by considering two effects: a correlation between the outflow velocity and the logarithmic X-ray flux and intrinsic Doppler broadening with v_int = 10^4 km/s. The models were generated by calculating the fractional excess variance of count spectra from a Monte Carlo simulation. We find evidence that the outflow in PDS 456 is structured, i.e., that there exist two or more layers with outflow velocities 0.27-0.30 c, 0.41-0.49 c, and 0.15-0.20 c for a possible third layer, which agrees well with the literature. We discuss the prospects of generally applicable models for excess variance spectra for detecting ultra-fast outflows and investigating their structure. We provide an estimate for the strength of the correlation between the outflow velocity and the logarithmic X-ray flux and investigate its validity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا