ﻻ يوجد ملخص باللغة العربية
Modifying material properties at the nanoscale is crucially important for devices in nanoelectronics, nanophotonics and quantum information. Optically active defects in wide band gap materials, for instance, are vital constituents for the realisation of quantum technologies. Yet, the introduction of atomic defects through direct ion implantation remains a fundamental challenge. Herein, we establish a universal method for material doping by exploiting one of the most fundamental principles of physics - momentum transfer. As a proof of concept, we direct-write arrays of emitters into diamond via momentum transfer from a Xe+ focused ion beam (FIB) to thin films of the group IV dopants pre-deposited onto a diamond surface. We conclusively show that the technique, which we term knock-on doping, can yield ultra-shallow dopant profiles localized to the top 5 nm of the target surface, and use it to achieve sub-50 nm lateral resolution. The knock-on doping method is cost-effective, yet very versatile, powerful and universally suitable for applications such as electronic and magnetic doping of atomically thin materials and engineering of near-surface states of semiconductor devices.
We experimentally demonstrate fabrication of tunable high contrast periodic fishnet metasurfaces with 3 um period on 200 nm thick Ge2Sb2Te5 films sputted onto glass and sapphire substrates using direct laser writing technique. We find that the use of
The threading of a polymer chain through a small pore is a classic problem in polymer dynamics and underlies nanopore sensing technology. However important experimental aspects of the polymer motion in a solid-state nanopore, such as an accurate meas
A novel technique is reported to improve the resolution of two-photon direct laser writing lithography. Thanks to the high collimation enabled by extraordinary $varepsilon_{NZ}$ (near-zero) metamaterial features, ultra-thin dielectric hyper resolute
Photothermal heating represents a major constraint that limits the performance of many nanoscale optoelectronic and optomechanical devices including nanolasers, quantum optomechanical resonators, and integrated photonic circuits. Although radiation-p
Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later f