ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct measurements reveal non-Markovian fluctuations of DNA threading through a solid-state nanopore

251   0   0.0 ( 0 )
 نشر من قبل Nicholas Bell Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The threading of a polymer chain through a small pore is a classic problem in polymer dynamics and underlies nanopore sensing technology. However important experimental aspects of the polymer motion in a solid-state nanopore, such as an accurate measurement of the velocity variation during translocation, have remained elusive. In this work we analysed the translocation through conical quartz nanopores of a 7 kbp DNA double-strand labelled with six markers equally spaced along its contour. These markers, constructed from DNA hairpins, give direct experimental access to the translocation dynamics. On average we measure a 5% reduction in velocity during the translocation. We also find a striking correlation in velocity fluctuations with a decay constant of 100s of {mu}s. These results shed light on hitherto unresolved problems in the dynamics of DNA translocation and provide guidance for experiments seeking to determine positional information along a DNA strand.

قيم البحث

اقرأ أيضاً

Solid-state nanopores are single molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage and salt dependence of the frequency of double-str anded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier limited, length dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation which includes the contribution of an entropic barrier for polymer entry.
The determination of a patients DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design personalized medicine [3]. Moreover, statistical studies and comparison of genomes [4] of a large n umber of individuals are crucial for the analysis of mutations [5] and hereditary diseases, paving the way to preventive medicine [6]. DNA sequencing is, however, currently still a vastly time-consuming and very expensive task [4], consisting of pre-processing steps, the actual sequencing using the Sanger method, and post-processing in the form of data analysis [7]. Here we propose a new approach that relies on functionalized nanopore-embedded electrodes to achieve an unambiguous distinction of the four nucleic acid bases in the DNA sequencing process. This represents a significant improvement over previously studied designs [8,9] which cannot reliably distinguish all four bases of DNA. The transport properties of the setup investigated by us, employing state-of-the-art density functional theory together with the non-equilibrium Greens Function method, leads to current responses that differ by at least one order of magnitude for different bases and can thus provide a much more robust read-out of the base sequence. The implementation of our proposed setup could thus lead to a viable protocol for rapid DNA sequencing with significant consequences for the future of genome related research in particular and health care in general.
When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this melting transition have been intensively investigated. Recently t here has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.
185 - O. Flomenbom , J. Klafter 2003
We investigate the translocation of a single stranded DNA through a pore which fluctuates between two conformations, using coupled master equations. The probability density function of the first passage times (FPT) of the translocation process is cal culated, displaying a triple, double or mono peaked behavior, depending on the interconversion rates between the conformations, the applied electric field, and the initial conditions. The cumulative probability function of the FPT, in a field-free environment, is shown to have two regimes, characterized by fast and slow timescales. An analytical expression for the mean first passage time of the translocation process is derived, and provides, in addition to the interconversion rates, an extensive characterization of the translocation process. Relationships to experimental observations are discussed.
Semiflexible polymers characterized by the contour length $L$ and persistent length $ell_p$ confined in a spatial region $D$ have been described as a series of ``{em spherical blobs} and ``{em deflecting lines} by de Gennes and Odjik for $ell_p < D$ and $ell_p gg D$ respectively. Recently new intermediate regimes ({em extended de Gennes} and {em Gauss-de Gennes}) have been investigated by Tree {em et al.} [Phys. Rev. Lett. {bf 110}, 208103 (2013)]. In this letter we derive scaling relations to characterize these transitions in terms of universal scaled fluctuations in $d$-dimension as a function of $L,ell_p$, and $D$, and show that the Gauss-de Gennes regime is absent and extended de Gennes regime is vanishingly small for polymers confined in a 2D strip. We validate our claim by extensive Brownian dynamics (BD) simulation which also reveals that the prefactor $A$ used to describe the chain extension in the Odjik limit is independent of physical dimension $d$ and is the same as previously found by Yang {em et al.}[Y. Yang, T. W. Burkhardt, G. Gompper, Phys. Rev. E {bf 76}, 011804 (2007)]. Our studies are relevant for optical maps of DNA stretched inside a nano-strip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا