ترغب بنشر مسار تعليمي؟ اضغط هنا

Solid-state laser refrigeration of a semiconductor optomechanical resonator

181   0   0.0 ( 0 )
 نشر من قبل Xiaojing Xia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photothermal heating represents a major constraint that limits the performance of many nanoscale optoelectronic and optomechanical devices including nanolasers, quantum optomechanical resonators, and integrated photonic circuits. Although radiation-pressure damping has been reported to cool an individual vibrational mode of an optomechanical resonator to its quantum ground state, to date the internal material temperature within an optomechanical resonator has not been reported to cool via laser excitation. Here we demonstrate the direct laser refrigeration of a semiconductor optomechanical resonator >20K below room temperature based on the emission of upconverted, anti-Stokes photoluminescence of trivalent ytterbium ions doped within a yttrium-lithium-fluoride (YLF) host crystal. Optically-refrigerating the lattice of a dielectric resonator has the potential to impact several fields including scanning probe microscopy, the sensing of weak forces, the measurement of atomic masses, and the development of radiation-balanced solid-state lasers. In addition, optically refrigerated resonators may be used in the future as a promising starting point to perform motional cooling for exploration of quantum effects at mesoscopic length scales,temperature control within integrated photonic devices, and solid-state laser refrigeration of quantum materials



قيم البحث

اقرأ أيضاً

The negatively-charged nitrogen vacancy (NV$^-$) centre in diamond is a remarkable optical quantum sensor for a range of applications including, nanoscale thermometry, magnetometry, single photon generation, quantum computing, and communication. Howe ver, to date the performance of these techniques using NV$^-$ centres has been limited by the thermally-induced spectral wandering of NV$^-$ centre photoluminescence due to detrimental photothermal heating. Here we demonstrate that solid-state laser refrigeration can be used to enable rapid (ms) optical temperature control of nitrogen vacancy doped nanodiamond (NV$^-$:ND) quantum sensors in both atmospheric and textit{in vacuo} conditions. Nanodiamonds are attached to ceramic microcrystals including 10% ytterbium doped yttrium lithium fluoride (Yb:LiYF$_4$) and sodium yttrium fluoride (Yb:NaYF$_4$) by van der Waals bonding. The fluoride crystals were cooled through the efficient emission of upconverted infrared photons excited by a focused 1020 nm laser beam. Heat transfer to the ceramic microcrystals cooled the adjacent NV$^-$:NDs by 10 and 27 K at atmospheric pressure and $sim$10$^{-3}$ Torr, respectively. The temperature of the NV$^-$:NDs was measured using both Debye-Waller factor (DWF) thermometry and optically detected magnetic resonance (ODMR), which agree with the temperature of the laser cooled ceramic microcrystal. Stabilization of thermally-induced spectral wandering of the NV$^{-}$ zero-phonon-line (ZPL) is achieved by modulating the 1020 nm laser irradiance. The demonstrated cooling of NV$^-$:NDs using an optically cooled microcrystal opens up new possibilities for rapid feedback-controlled cooling of a wide range of nanoscale quantum materials.
We provide a fully analytical treatment for the partial refrigeration of the thermal motion of a quantum mechanical resonator under the action of feedback. As opposed to standard cavity optomechanics where the aim is to isolate and cool a single mech anical mode, the aim here is to extract the thermal energy from many vibrational modes within a large frequency bandwidth. We consider a standard cold-damping technique where homodyne read-out of the cavity output field is fed into a feedback loop that provides a cooling action directly applied on the mechanical resonator. Analytical and numerical results predict that low final occupancies are achievable independently of the number of modes addressed by the feedback as long as the cooling rate is smaller than the intermode frequency separation. For resonators exhibiting a few nearly degenerate pairs of modes cooling is less efficient and a weak dependence on the number of modes is obtained. These scalings hint towards the design of frequency resolved mechanical resonators where efficient refrigeration is possible via simultaneous cold-damping feedback.
Dual-comb sources with equally spaced and low phase noise frequency lines are of great importance for high resolution spectroscopy and metrology. In the terahertz frequency range, electrically pumped semiconductor quantum cascade lasers (QCLs) are su itable candidates for frequency comb and dual-comb operation. For a single laser frequency comb, the repetition rate can be locked using a microwave injection locking and the carrier frequency can be locked to a highly stable source. However, for the locking of two laser combs, four frequencies (two repetition rates and two carrier offset frequencies) should be simultaneously locked; If one only refers to the dual-comb signal, two relative frequencies, i.e., the offset frequency and repetition frequency of one laser against those of the other laser, should be locked. Although the locking techniques that have been successfully used for a single laser comb can be, in principle, applied to a dual-comb laser source, the complete locking considerably complicates the implementation of such a system. Here, we propose a method to stabilize a terahertz QCL dual-comb source by phase locking one of the dual-comb lines to a radio frequency (RF) synthesizer. This technique forces one of the lasers to follow the tone of the other one (keeping the sum of the carrier offset frequency difference and repetition frequency difference between the two laser combs as a constant) by exploiting a laser self-detection that avoids the use of an external detector. Through the demonstration of this locking technique, we demonstrate that the dual-comb can generate periodic pulses over a 2 us time scale, showing that the terahertz QCL comb without a control of the repetition rate can produce pulsed-type waveforms.
Using pulsed optical excitation and read-out along with single phonon counting techniques, we measure the transient back-action, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of 11mK. In addition to observing a slow (~740ns) turn-on time for the optical-absorption-induced hot phonon bath, we measure for the 5.6GHz `breathing acoustic mode of the cavity an initial phonon occupancy as low as 0.021 +- 0.007 (mode temperature = 70mK) and an intrinsic mechanical decay rate of 328 +- 14 Hz (mechanical Q-factor = 1.7x10^7). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.
144 - Chao Li , Xianyi Cao , Kan Wu 2021
We demonstrate a blind zone-suppressed and flash-emitting solid-state Lidar based on lens-assisted beam steering (LABS) technology. As a proof-of-concept demonstration, with a design of subwavelength-gap one-dimensional (1D) long-emitter array and mu lti-wavelength flash beam emitting, the device was measured to have 5%-blind zone suppression, 0.06{deg}/point-deflection step and 4.2 microsecond-scanning speed. In time-of-flight (TOF) ranging experiments, Lidar systems have field of view of 11.3{deg}* 8.1{deg} (normal device) or 0.9{deg}*8.1{deg} (blind-zone suppressed device), far-field number of resolved points of 192 and a detection distance of 10 m. This work demonstrates the possibility that a new integrated beam-steering technology can be implemented in a Lidar without sacrificing other performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا