ﻻ يوجد ملخص باللغة العربية
We consider a sequence of matrices that are associated to Markov dynamical systems and use determinant-free linear algebra techniques (as well as some algebra and complex analysis) to rigorously estimate the eigenvalues of every matrix simultaneously without doing any calculations on the matrices themselves. As a corollary, we obtain mixing rates for every system at once, as well as symmetry properties of densities associated to the system; we also find the spectral properties of a sequence of related factor systems.
Many systems of interest in science and engineering are made up of interacting subsystems. These subsystems, in turn, could be made up of collections of smaller interacting subsystems and so on. In a series of papers David Spivak with collaborators f
We revisit the visible points of a lattice in Euclidean $n$-space together with their generalisations, the $k$th-power-free points of a lattice, and study the corresponding dynamical system that arises via the closure of the lattice translation orbit
We use the dynamical algebra of a quantum system and its dynamical invariants to inverse engineer feasible Hamiltonians for implementing shortcuts to adiabaticity. These are speeded up processes that end up with the same populations than slow, adiaba
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence
Motivated by the growing requirements on the operation of complex engineering systems, we present contracts as specifications for continuous-time linear dynamical systems with inputs and outputs. A contract is defined as a pair of assumptions and gua