ﻻ يوجد ملخص باللغة العربية
Many systems of interest in science and engineering are made up of interacting subsystems. These subsystems, in turn, could be made up of collections of smaller interacting subsystems and so on. In a series of papers David Spivak with collaborators formalized these kinds of structures (systems of systems) as algebras over presentable colored operads. It is also very useful to consider maps between dynamical systems. This amounts to viewing dynamical systems as objects in an appropriate category. This is the point taken by DeVille and Lerman in the study of dynamics on networks. The goal of this paper is to describe an algebraic structure that encompasses both approaches to systems of systems. To this end we replace the monoidal category of wiring diagrams by a monoidal double category whose objects are surjective submersions. This allows us, on one hand, build new large open systems out of collections of smaller open subsystems and on the other keep track of maps between open systems. As a special case we recover the results of DeVille and Lerman on fibrations of networks of manifolds.
We generalize the results of Networks of open systems by the first author to the setting of hybrid systems. In particular we introduce the notions of hybrid open systems, their networks and maps between networks. A network of systems is a blueprint f
Many systems of interest in science and engineering are made up of interacting subsystems. These subsystems, in turn, could be made up of collections of smaller interacting subsystems and so on. In a series of papers David Spivak with collaborators f
We show that there is a natural restriction on the smoothness of spaces where the transfer operator for a continuous dynamical system has a spectral gap. Such a space cannot be embedded in a Holder space with Holder exponent greater than 1/2 unless it consists entirely of coboundaries.
Neural Networks (NNs) have been identified as a potentially powerful tool in the study of complex dynamical systems. A good example is the NN differential equation (DE) solver, which provides closed form, differentiable, functional approximations for
We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to