ﻻ يوجد ملخص باللغة العربية
This paper studies the econometric aspects of the generalized local IV framework defined using the unordered monotonicity condition, which accommodates multiple levels of treatment and instrument in program evaluations. The framework is explicitly developed to allow for conditioning covariates. Nonparametric identification results are obtained for a wide range of policy-relevant parameters. Semiparametric efficiency bounds are computed for these identified structural parameters, including the local average structural function and local average structural function on the treated. Two semiparametric estimators are introduced that achieve efficiency. One is the conditional expectation projection estimator defined through the nonparametric identification equation. The other is the double/debiased machine learning estimator defined through the efficient influence function, which is suitable for high-dimensional settings. More generally, for parameters implicitly defined by possibly non-smooth and overidentifying moment conditions, this study provides the calculation for the corresponding semiparametric efficiency bounds and proposes efficient semiparametric GMM estimators again using the efficient influence functions. Then an optimal set of testable implications of the model assumption is proposed. Previous results developed for the binary local IV model and the multivalued treatment model under unconfoundedness are encompassed as special cases in this more general framework. The theoretical results are illustrated by an empirical application investigating the return to schooling across different fields of study, and a Monte Carlo experiment.
We study testable implications of multiple equilibria in discrete games with incomplete information. Unlike de Paula and Tang (2012), we allow the players private signals to be correlated. In static games, we leverage independence of private types ac
We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g
Instrumental variables (IV) regression is a popular method for the estimation of the endogenous treatment effects. Conventional IV methods require all the instruments are relevant and valid. However, this is impractical especially in high-dimensional
We propose a computationally feasible way of deriving the identified features of models with multiple equilibria in pure or mixed strategies. It is shown that in the case of Shapley regular normal form games, the identified set is characterized by th
This paper studies identification and estimation of a class of dynamic models in which the decision maker (DM) is uncertain about the data-generating process. The DM surrounds a benchmark model that he or she fears is misspecified by a set of models.