ﻻ يوجد ملخص باللغة العربية
Instrumental variables (IV) regression is a popular method for the estimation of the endogenous treatment effects. Conventional IV methods require all the instruments are relevant and valid. However, this is impractical especially in high-dimensional models when we consider a large set of candidate IVs. In this paper, we propose an IV estimator robust to the existence of both the invalid and irrelevant instruments (called R2IVE) for the estimation of endogenous treatment effects. This paper extends the scope of Kang et al. (2016) by considering a true high-dimensional IV model and a nonparametric reduced form equation. It is shown that our procedure can select the relevant and valid instruments consistently and the proposed R2IVE is root-n consistent and asymptotically normal. Monte Carlo simulations demonstrate that the R2IVE performs favorably compared to the existing high-dimensional IV estimators (such as, NAIVE (Fan and Zhong, 2018) and sisVIVE (Kang et al., 2016)) when invalid instruments exist. In the empirical study, we revisit the classic question of trade and growth (Frankel and Romer, 1999).
Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable exclusion assumptions that rule out any relationshi
In non-experimental settings, the Regression Discontinuity (RD) design is one of the most credible identification strategies for program evaluation and causal inference. However, RD treatment effect estimands are necessarily local, making statistical
We provide a novel inferential framework to estimate the exact affine Stone index (EASI) model, and analyze welfare implications due to price changes caused by taxes. Our inferential framework is based on a non-parametric specification of the stochas
We develop tools for utilizing correspondence experiments to detect illegal discrimination by individual employers. Employers violate US employment law if their propensity to contact applicants depends on protected characteristics such as race or sex
The policy relevant treatment effect (PRTE) measures the average effect of switching from a status-quo policy to a counterfactual policy. Estimation of the PRTE involves estimation of multiple preliminary parameters, including propensity scores, cond