ﻻ يوجد ملخص باللغة العربية
Quasar absorption-line studies in the ultraviolet (UV) can uniquely probe the nature of the multiphase cool-warm (10^4 < T < 10^6 K) gas in and around galaxy clusters, promising to provide unprecedented insights into 1) interactions between the circumgalactic medium (CGM) associated with infalling galaxies and the hot (T > 10^6 K) X-ray emitting intracluster medium (ICM), 2) the stripping of metal-rich gas from the CGM, and 3) a multiphase structure of the ICM with a wide range of temperatures and metallicities. In this work, we present results from a high-resolution simulation of a ~10^14 solar mass galaxy cluster to study the physical properties and observable signatures of this cool-warm gas in galaxy clusters. We show that the ICM becomes increasingly multiphased at large radii, with the cool-warm gas becoming dominant in cluster outskirts. The diffuse cool-warm gas also exhibits a wider range of metallicity than the hot X-ray emitting gas. We make predictions for the covering fractions of key absorption-line tracers, both in the ICM and in the CGM of cluster galaxies, typically observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope (HST). We further extract synthetic spectra to demonstrate the feasibility of detecting and characterizing the thermal, kinematic, and chemical composition of the cool-warm gas using H I, O VI, and C IV lines, and we predict an enhanced population of broad Ly-alpha absorbers tracing the warm gas. Lastly, we discuss future prospects of probing the multiphase structure of the ICM beyond HST.
The intracluster medium (ICM) is a multi-phase environment, dynamically regulated by Active Galactic Nuclei (AGN), the motions of galaxies through it, and mergers with other clusters. AGN as a central heating source are key to preventing runaway cool
We performed three-dimensional magnetohydrodynamic simulations to study the evolution of a supernova remnant (SNR) in a turbulent neutral atomic interstellar medium. The media used as background shares characteristics with the Solar neighbourhood and
To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extra
The circumgalactic medium (CGM) connects the gas between the interstellar medium (ISM) and the intergalactic medium, which plays an important role in galaxy evolution. We use the stellar mass-metallicity relationship to investigate whether sharing th
We present new Chandra X-ray observations of the brightest cluster galaxy (BCG) in the cool core cluster Abell 2597. The data reveal an extensive kpc-scale X-ray cavity network as well as a 15 kpc filament of soft-excess gas exhibiting strong spatial