ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraviolet Signatures of the Multiphase Intracluster and Circumgalactic Media in the RomulusC Simulation

55   0   0.0 ( 0 )
 نشر من قبل Iryna Butsky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasar absorption-line studies in the ultraviolet (UV) can uniquely probe the nature of the multiphase cool-warm (10^4 < T < 10^6 K) gas in and around galaxy clusters, promising to provide unprecedented insights into 1) interactions between the circumgalactic medium (CGM) associated with infalling galaxies and the hot (T > 10^6 K) X-ray emitting intracluster medium (ICM), 2) the stripping of metal-rich gas from the CGM, and 3) a multiphase structure of the ICM with a wide range of temperatures and metallicities. In this work, we present results from a high-resolution simulation of a ~10^14 solar mass galaxy cluster to study the physical properties and observable signatures of this cool-warm gas in galaxy clusters. We show that the ICM becomes increasingly multiphased at large radii, with the cool-warm gas becoming dominant in cluster outskirts. The diffuse cool-warm gas also exhibits a wider range of metallicity than the hot X-ray emitting gas. We make predictions for the covering fractions of key absorption-line tracers, both in the ICM and in the CGM of cluster galaxies, typically observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope (HST). We further extract synthetic spectra to demonstrate the feasibility of detecting and characterizing the thermal, kinematic, and chemical composition of the cool-warm gas using H I, O VI, and C IV lines, and we predict an enhanced population of broad Ly-alpha absorbers tracing the warm gas. Lastly, we discuss future prospects of probing the multiphase structure of the ICM beyond HST.

قيم البحث

اقرأ أيضاً

The intracluster medium (ICM) is a multi-phase environment, dynamically regulated by Active Galactic Nuclei (AGN), the motions of galaxies through it, and mergers with other clusters. AGN as a central heating source are key to preventing runaway cool ing flows, but their role in heating cores in a cosmological context is still poorly understood. The activity of the AGN is strongly linked to star formation, especially in the Brightest Cluster Galaxy (BCG), likely because both rely on cold phase gas. A self-consistent model for AGN and star formation in galaxy clusters thus requires cosmological context, higher resolution, and a careful modeling of cooling and heating balance. In this paper, we use the high-resolution hydrodynamical cosmological simulation of the RomulusC galaxy cluster to study in detail the role of AGN and a major, head-on merger in shaping the cluster core. The unprecedented resolution of the RomulusC simulation captures the multiphase structure of the ICM. The realistic large-scale outflows launched by very small-scale thermal injections, the improved modeling of turbulent diffusion and mixing, and the particle nature of the simulation allow us to carefully separate different heating channels. We show that AGN activity, while efficient at regulating star formation, is incapable of destroying a CC. Instead, that process is facilitated by a head-on, 1:8 mass ratio merger. The merger generates bulk and turbulent motions, which in turn mix high entropy gas generated by AGN and merger driven shocks, turbulent dissipation and sloshing of the ICM by infalling substructures. While central cooling times remain shorter than the Hubble time, restoring a CC is made more difficult by the reduced precipitation rates at larger radii, emphasizing that the AGN-ICM connection is truly a multi-scale problem.
We performed three-dimensional magnetohydrodynamic simulations to study the evolution of a supernova remnant (SNR) in a turbulent neutral atomic interstellar medium. The media used as background shares characteristics with the Solar neighbourhood and the SNR has mass and energy similar to those of a Type Ia object. Our initial conditions consist of dense clouds in a diluted medium, with the main difference between simulations being the average magnitude of the magnetic field. We measured amplifications of the magnetic energy of up to 34$%$ and we generated synthetic maps that illustrate how the same object can show different apparent geometries and physical properties when observed through different lines of sight.
119 - P. Richter , S.E. Nuza , A.J. Fox 2016
To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extra galactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Along 270 sightlines we measure metal absorption in the lines of SiII, SiIII, CII, and CIV and associated HI 21 cm emission in HVCs in the velocity range |v_LSR|=100-500 km s^-1. With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the absorption characteristics with that of Damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of the LG. Our study demonstrates that the Milky Way CGM contains sufficient gaseous material to maintain the Galactic star-formation rate at its current level. We show that the CGM is composed of discrete gaseous structures that exhibit a large-scale kinematics together with small-scale variations in physical conditions. The Magellanic Stream clearly dominates both the cross section and mass flow of high-velocity gas in the Milky Ways CGM. The possible presence of high-velocity LG gas underlines the important role of the local cosmological environment in the large-scale gas-circulation processes in and around the Milky Way (abridged).
The circumgalactic medium (CGM) connects the gas between the interstellar medium (ISM) and the intergalactic medium, which plays an important role in galaxy evolution. We use the stellar mass-metallicity relationship to investigate whether sharing th e CGM will affect the distribution of metals in galaxy pairs. The optical emission lines from the Sloan Digital Sky Survey Data Release (SDSS DR7) are used to measure the gas-phase metallicity. We find that there is no significant difference in the distribution of the metallicity difference between two members in star forming-star forming pairs ($rm Delta log(O/H)_{diff}$), metallicity offset from the best-fitted stellar mass-metallicity relationship of galaxies in pairs ($rm Delta log(O/H)_{MS}$), as compared to fake pairs. By looking at $rm Delta log(O/H)_{diff}$ and $rm Delta log(O/H)_{MS}$ as a function of the star formation rate (SFR), specific star formation rate (sSFR), and stellar mass ratio, no difference is seen between galaxies in pairs and control galaxies. From our results, the share of the CGM may not play an important role in shaping the evolution of metal contents of galaxies.
We present new Chandra X-ray observations of the brightest cluster galaxy (BCG) in the cool core cluster Abell 2597. The data reveal an extensive kpc-scale X-ray cavity network as well as a 15 kpc filament of soft-excess gas exhibiting strong spatial correlation with archival VLA radio data. In addition to several possible scenarios, multiwavelength evidence may suggest that the filament is associated with multiphase (10^3 - 10^7 K) gas that has been entrained and dredged-up by the propagating radio source. Stemming from a full spectral analysis, we also present profiles and 2D spectral maps of modeled X-ray temperature, entropy, pressure, and metal abundance. The maps reveal an arc of hot gas which in projection borders the inner edge of a large X-ray cavity. Although limited by strong caveats, we suggest that the hot arc may be (a) due to a compressed rim of cold gas pushed outward by the radio bubble or (b) morphologically and energetically consistent with cavity-driven active galactic nucleus (AGN) heating models invoked to quench cooling flows, in which the enthalpy of a buoyant X-ray cavity is locally thermalized as ambient gas rushes to refill its wake. If confirmed, this would be the first observational evidence for this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا