ترغب بنشر مسار تعليمي؟ اضغط هنا

AGN driven perturbations in the intra-cluster medium of cool core cluster ZwCl 2701

258   0   0.0 ( 0 )
 نشر من قبل Sachindra Naik
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results obtained from a total of 123 ks X-ray (Chandra) and 8 hrs of 1.4 GHz radio (Giant Metrewave Radio Telescope - GMRT) observations of the cool core cluster ZwCl 2701 (z = 0.214). These observations of ZwCl 2701 showed the presence of an extensive pair of ellipsoidal cavities along the East and West directions within the central region < 20 kpc. Detection of bright rims around the cavities suggested that the radio lobes displaced X-ray emitting hot gas forming shell-like structures. The total cavity power (mechanical power) that directly heated the surrounding gas and cooling luminosity of the cluster were estimated to be ~2.27 x 10^{45} ergs and 3.5 x 10^{44} ergs, respectively. Comparable values of cavity power and cooling luminosity of ZwCL 2701 suggested that the mechanical power of the AGN outburst is large enough to balance the radiative cooling in the system. The star formation rate derived from the H_alpha luminosity was found to be ~0.60 M_sun yr^{-1} which is about three orders of magnitude lower than the cooling rate of ~196 M_sun yr^{-1}. Detection of the floor in entropy profile of ZwCl 2701 suggested the presence of an alternative heating mechanism at the centre of the cluster. Lower value of the ratio (~10^{-2}) between black hole mass accretion rate and Eddington mass accretion rate suggested that launching of jet from the super massive black hole is efficient in ZwCl 2701. However, higher value of ratio (~10^{3}) between black hole mass accretion rate and Bondi accretion rate indicated that the accretion rate required to create cavities is well above the Bondi accretion rate.



قيم البحث

اقرأ أيضاً

We present a multi-wavelength analysis of the galaxy cluster A1668, performed by means of new EVLA and Chandra observations and archival H$alpha$ data. The radio images exhibit a small central source ($sim$14 kpc at 1.4 GHz) with L$_{text{1.4 GHz}}$ $sim$6 $cdot$ 10$^{23}$ W Hz$^{-1}$. The mean spectral index between 1.4 GHz and 5 GHz is $sim$ -1, consistent with the usual indices found in BCGs. The cooling region extends for 40 kpc, with bolometric X-ray luminosity L$_{text{cool}} = 1.9pm 0.1 cdot$ 10$^{43}$ erg s$^{-1}$. We detect an offset of $sim$ 6 kpc between the cluster BCG and the X-ray peak, and another offset of $sim$ 7.6 kpc between the H$alpha$ and the X-ray peaks. We discuss possible causes for these offsets, which suggest that the coolest gas is not condensing directly from the lowest-entropy gas. In particular, we argue that the cool ICM was drawn out from the core by sloshing, whereas the H$alpha$ filaments were pushed aside from the expanding radio galaxy lobes. We detect two putative X-ray cavities, spatially associated to the west radio lobe (cavity A) and to the east radio lobe (cavity B). The cavity power and age of the system are P$_{text{cav}} sim$ 9 $times$10$^{42}$ erg s$^{-1}$ and t$_{text{age}} sim$5.2 Myr, respectively. Evaluating the position of A1668 in the cooling luminosity-cavity power parameter space, we find that the AGN energy injection is currently consistent within the scatter of the relationship, suggesting that offset cooling is likely not breaking the AGN feedback cycle.
Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.
Stars in globular clusters (GCs) lose a non negligible amount of mass during their post-main sequence evolution. This material is then expected to build up a substantial intra-cluster medium (ICM) within the GC. However, the observed gas content in G Cs is a couple of orders of magnitude below these expectations. Here we follow the evolution of this stellar wind material through hydrodynamical simulations to attempt to reconcile theoretical predictions with observations. We test different mechanisms proposed in the literature to clear out the gas such as ram-pressure stripping by the motion of the GC in the Galactic halo medium and ionisation by UV sources. We use the code ramses to run 3D hydrodynamical simulations to study for the first time the ICM evolution within discretised multi-mass GC models including stellar winds and full radiative transfer. We find that the inclusion of both ram-pressure and ionisation is mandatory to explain why only a very low amount of ionised gas is observed in the core of GCs. The same mechanisms operating in ancient GCs that clear the gas could also be efficient at younger ages, meaning that young GCs would not be able to retain gas and form multiple generations of stars as assumed in many models to explain multiple populations. However, this rapid clearing of gas is consistent with observations of young massive clusters.
In the core of the Fornax cluster, on the West side of NGC1399, we have detected a previously unknown region of intra-cluster light (ICL). It is made up by several faint ($mu_r simeq 28 - 29$~mag/arcsec$^2$) {it patches} of diffuse light. The bulk of the ICL is located in between the three bright galaxies in the core, NGC1387, NGC1379 and NGC1381, at $10leq R leq40$~arcmin ($sim 58 - 230$~kpc) from the central galaxy NGC~1399. We show that the ICL is the counterpart in the diffuse light of the known over-density in the population of blue globular clusters (GCs). The total g-band luminosity of the ICL is $L_gsimeq 8.3 times 10^{9}$ $L_{odot}$, which is $sim5%$ of the total luminosity of NGC1399. This is consistent with the fraction of the blue GCs in the same region of the cluster. The ICL has $g-r sim 0.7$~mag, which is similar to the colors in the halo of the bright galaxies in the cluster core. The new findings were compared with theoretical predictions for the ICL formation and they support a scenario in which the intra-cluster population detected in the core of the Fornax cluster is build up by the tidal stripping of material (stars and GCs) from galaxy outskirts in a close passage with the cD. Moreover, the diffuse form of the ICL and its location close to the core of the cluster is expected in a dynamically evolved cluster as Fornax.
69 - Silvano Molendi 2004
The Intra-Cluster Medium (ICM) is a rarefied, hot, highly ionized, metal rich, weakly magnetized plasma. In these proceeding, after having reviewed some basic ICM properties, I discuss recent results obtained with the BeppoSAX, XMM-Newton and Chandra satellites. These results are summarized in the following five points. 1) Currently available hard X-ray data does not allow us to constrain B fields in radio halos, the advent of hard X-ray telescopes in a few years may change the situation substantially. 2) There is mounting evidence that temperature profiles of clusters at large radii decline; however investigation of the outermost regions will have to await a new generation of yet unplanned but technologically feasible experiments. 3) The ICM is polluted with metals, the enrichment has probably occurred early on in the clusters life. The abundance excess observed at the center of CC clusters is due to the giant elliptical always found in these systems. 4) Chandra and XMM-Newton observations of relaxed clusters have falsified the previously accepted cooling flow model, heating mechanisms that may offset the cooling are actively being sought. 5) The superb angular resolution of Chandra is allowing us to trace a previously unknown phenomenon intimately related to the formation of galaxy clusters and of their cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا