ﻻ يوجد ملخص باللغة العربية
We report a systematic study of finite-temperature spin transport in quantum and classical one-dimensional magnets with isotropic spin interactions, including both integrable and non-integrable models. Employing a phenomenological framework based on a generalized Burgers equation in a time-dependent stochastic environment, we identify four different universality classes of spin fluctuations. These comprise, aside from normal spin diffusion, three types of superdiffusive transport: the KPZ universality class and two distinct types of anomalous diffusion with multiplicative logarithmic corrections. Our predictions are supported by extensive numerical simulations on various examples of quantum and classical chains. Contrary to common belief, we demonstrate that even non-integrable spin chains can display a diverging spin diffusion constant at finite temperatures.
We present a controlled rare-weak-link theory of the superfluid-to-Bose/Mott glass transition in one-dimensional disordered systems. The transition has Kosterlitz-Thouless critical properties but may occur at an arbitrary large value of the Luttinger
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o
We present a self-contained discussion of the universality classes of the generalized epidemic process (GEP) on Poisson random networks, which is a simple model of social contagions with cooperative effects. These effects lead to rich phase transitio
In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical models on the two dimensional lattices, whose transitions involve non-local or topological properties, including site and bond percolations,
We study the conditions under which the critical behavior of the three-dimensional $mn$-vector model does not belong to the spherically symmetrical universality class. In the calculations we rely on the field-theoretical renormalization group approac