ﻻ يوجد ملخص باللغة العربية
We present a controlled rare-weak-link theory of the superfluid-to-Bose/Mott glass transition in one-dimensional disordered systems. The transition has Kosterlitz-Thouless critical properties but may occur at an arbitrary large value of the Luttinger parameter $K$. In contrast to the scenario by Altman {it et al.} [Phys. Rev. B {bf 81}, 174528 (2010)], the hydrodynamic description is valid under the correlation radius and defines criticality via the renormalization of microscopically weak links, along the lines of Kane and Fisher [Phys. Rev. Lett. {bf 68}, 1220 (1992)]. The hallmark of the theory is the relation $K^{(c)}=1/zeta$ between the critical value of the Luttinger parameter at macroscopic scales and the microscopic (irrenormalizable) exponent $zeta$ describing the scaling $propto 1/N^{1-zeta}$ for the strength of the weakest link among the $N/L gg 1$ disorder realizations in a system of fixed mesoscopic size $L$.
We report a systematic study of finite-temperature spin transport in quantum and classical one-dimensional magnets with isotropic spin interactions, including both integrable and non-integrable models. Employing a phenomenological framework based on
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o
We study the finite-temperature superfluid transition in a modified two-dimensional (2D) XY model with power-law distributed scratch-like bond disorder. As its exponent decreases, the disorder grows stronger and the mechanism driving the superfluid t
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the
We investigate the non-equilibrium dynamics of a class of isolated one-dimensional systems possessing two degenerate ground states, initialized in a low-energy symmetric phase. We report the emergence of a time-scale separation between fast (radiatio