ﻻ يوجد ملخص باللغة العربية
Future information technology demands ultimately fast, low-loss quantum control. Intense light fields have facilitated important milestones, such as inducing novel states of matter, accelerating electrons ballistically, or coherently flipping the valley pseudospin. These dynamics leave unique signatures, such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissipative way of switching the technologically most important quantum attribute - the spin - between two states separated by a potential barrier is to trigger an all-coherent precession. Pioneering experiments and theory with picosecond electric and magnetic fields have suggested this possibility, yet observing the actual dynamics has remained out of reach. Here, we show that terahertz (1 THz = 10$^{12}$ Hz) electromagnetic pulses allow coherent navigation of spins over a potential barrier and we reveal the corresponding temporal and spectral fingerprints. This goal is achieved by coupling spins in antiferromagnetic TmFeO$_{3}$ with the locally enhanced THz electric field of custom-tailored antennas. Within their duration of 1 ps, the intense THz pulses abruptly change the magnetic anisotropy and trigger a large-amplitude ballistic spin motion. A characteristic phase flip, an asymmetric splitting of the magnon resonance, and a long-lived offset of the Faraday signal are hallmarks of coherent spin switching into adjacent potential minima, in agreement with a numerical simulation. The switchable spin states can be selected by an external magnetic bias. The low dissipation and the antennas sub-wavelength spatial definition could facilitate scalable spin devices operating at THz rates.
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addres
All-optical switching (AOS) of magnetic domains by femtosecond laser pulses was first observed in the transition metal-rare earth (TM-RE) alloy GdFeCo1-5; this phenomenon demonstrated the potential for optical control of magnetism for the development
We explore the possibility of ultrafast, coherent all-optical magnetization switching in antiferromagnets by studying the action of the inverse Faraday effect in CrPt, an easy-plane antiferromagnet. Using a combination of density functional theory an
We introduce the concept of a Majorana molecule, a topological bound state appearing in the geometry of a double quantum dot (QD) structure flanking a topological superconducting nanowire. We demonstrate that, if the Majorana bound states (MBSs) at o
We present an ultrafast all-optical gated amplifier, or transistor, consisting of a forest of ZnO nanowire lasers. A gate light pulse creates a dense electron-hole plasma and excites laser action inside the nanowires. Source light traversing the nano