ﻻ يوجد ملخص باللغة العربية
Current video representations heavily rely on learning from manually annotated video datasets which are time-consuming and expensive to acquire. We observe videos are naturally accompanied by abundant text information such as YouTube titles and Instagram captions. In this paper, we leverage this visual-textual connection to learn spatiotemporal features in an efficient weakly-supervised manner. We present a general cross-modal pair discrimination (CPD) framework to capture this correlation between a video and its associated text. Specifically, we adopt noise-contrastive estimation to tackle the computational issue imposed by the huge amount of pair instance classes and design a practical curriculum learning strategy. We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (Instagram-300k) to demonstrate its effectiveness. Without further fine-tuning, the learnt models obtain competitive results for action classification on Kinetics under the linear classification protocol. Moreover, our visual model provides an effective initialization to fine-tune on downstream tasks, which yields a remarkable performance gain for action recognition on UCF101 and HMDB51, compared with the existing state-of-the-art self-supervised training methods. In addition, our CPD model yields a new state of the art for zero-shot action recognition on UCF101 by directly utilizing the learnt visual-textual embeddings. The code will be made available at https://github.com/MCG-NJU/CPD-Video.
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the sa
The rapid development of facial manipulation techniques has aroused public concerns in recent years. Following the success of deep learning, existing methods always formulate DeepFake video detection as a binary classification problem and develop fra
We propose a self-supervised learning method to jointly reason about spatial and temporal context for video recognition. Recent self-supervised approaches have used spatial context [9, 34] as well as temporal coherency [32] but a combination of the t
DuctTake is a system designed to enable practical compositing of multiple takes of a scene into a single video. Current industry solutions are based around object segmentation, a hard problem that requires extensive manual input and cleanup, making c
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri