ترغب بنشر مسار تعليمي؟ اضغط هنا

Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition

115   0   0.0 ( 0 )
 نشر من قبل Unaiza Ahsan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a self-supervised learning method to jointly reason about spatial and temporal context for video recognition. Recent self-supervised approaches have used spatial context [9, 34] as well as temporal coherency [32] but a combination of the two requires extensive preprocessing such as tracking objects through millions of video frames [59] or computing optical flow to determine frame regions with high motion [30]. We propose to combine spatial and temporal context in one self-supervised framework without any heavy preprocessing. We divide multiple video frames into grids of patches and train a network to solve jigsaw puzzles on these patches from multiple frames. So the network is trained to correctly identify the position of a patch within a video frame as well as the position of a patch over time. We also propose a novel permutation strategy that outperforms random permutations while significantly reducing computational and memory constraints. We use our trained network for transfer learning tasks such as video activity recognition and demonstrate the strength of our approach on two benchmark video action recognition datasets without using a single frame from these datasets for unsupervised pretraining of our proposed video jigsaw network.

قيم البحث

اقرأ أيضاً

93 - Yuqi Huo , Xiaoli Xu , Yao Lu 2019
Video action recognition, which is topical in computer vision and video analysis, aims to allocate a short video clip to a pre-defined category such as brushing hair or climbing stairs. Recent works focus on action recognition with deep neural networ ks that achieve state-of-the-art results in need of high-performance platforms. Despite the fast development of mobile computing, video action recognition on mobile devices has not been fully discussed. In this paper, we focus on the novel mobile video action recognition task, where only the computational capabilities of mobile devices are accessible. Instead of raw videos with huge storage, we choose to extract multiple modalities (including I-frames, motion vectors, and residuals) directly from compressed videos. By employing MobileNetV2 as backbone, we propose a novel Temporal Trilinear Pooling (TTP) module to fuse the multiple modalities for mobile video action recognition. In addition to motion vectors, we also provide a temporal fusion method to explicitly induce the temporal context. The efficiency test on a mobile device indicates that our model can perform mobile video action recognition at about 40FPS. The comparative results on two benchmarks show that our model outperforms existing action recognition methods in model size and time consuming, but with competitive accuracy.
Training robust deep video representations has proven to be much more challenging than learning deep image representations. This is in part due to the enormous size of raw video streams and the high temporal redundancy; the true and interesting signa l is often drowned in too much irrelevant data. Motivated by that the superfluous information can be reduced by up to two orders of magnitude by video compression (using H.264, HEVC, etc.), we propose to train a deep network directly on the compressed video. This representation has a higher information density, and we found the training to be easier. In addition, the signals in a compressed video provide free, albeit noisy, motion information. We propose novel techniques to use them effectively. Our approach is about 4.6 times faster than Res3D and 2.7 times faster than ResNet-152. On the task of action recognition, our approach outperforms all the other methods on the UCF-101, HMDB-51, and Charades dataset.
141 - Yang Liu , Keze Wang , Haoyuan Lan 2021
Attempt to fully discover the temporal diversity and chronological characteristics for self-supervised video representation learning, this work takes advantage of the temporal dependencies within videos and further proposes a novel self-supervised me thod named Temporal Contrastive Graph Learning (TCGL). In contrast to the existing methods that ignore modeling elaborate temporal dependencies, our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning. To model multi-scale temporal dependencies, our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet temporal contrastive graphs. By randomly removing edges and masking nodes of the intra-snippet graphs or inter-snippet graphs, our TCGL can generate different correlated graph views. Then, specific contrastive learning modules are designed to maximize the agreement between nodes in different views. To adaptively learn the global context representation and recalibrate the channel-wise features, we introduce an adaptive video snippet order prediction module, which leverages the relational knowledge among video snippets to predict the actual snippet orders. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
292 - Yanghao Li , Sijie Song , Yuqi Li 2018
Temporal modeling in videos is a fundamental yet challenging problem in computer vision. In this paper, we propose a novel Temporal Bilinear (TB) model to capture the temporal pairwise feature interactions between adjacent frames. Compared with some existing temporal methods which are limited in linear transformations, our TB model considers explicit quadratic bilinear transformations in the temporal domain for motion evolution and sequential relation modeling. We further leverage the factorized bilinear model in linear complexity and a bottleneck network design to build our TB blocks, which also constrains the parameters and computation cost. We consider two schemes in terms of the incorporation of TB blocks and the original 2D spatial convolutions, namely wide and deep Temporal Bilinear Networks (TBN). Finally, we perform experiments on several widely adopted datasets including Kinetics, UCF101 and HMDB51. The effectiveness of our TBNs is validated by comprehensive ablation analyses and comparisons with various state-of-the-art methods.
We investigate the problem of representing an entire video using CNN features for human action recognition. Currently, limited by GPU memory, we have not been able to feed a whole video into CNN/RNNs for end-to-end learning. A common practice is to u se sampled frames as inputs and video labels as supervision. One major problem of this popular approach is that the local samples may not contain the information indicated by global labels. To deal with this problem, we propose to treat the deep networks trained on local inputs as local feature extractors. After extracting local features, we aggregate them into global features and train another mapping function on the same training data to map the global features into global labels. We study a set of problems regarding this new type of local features such as how to aggregate them into global features. Experimental results on HMDB51 and UCF101 datasets show that, for these new local features, a simple maximum pooling on the sparsely sampled features lead to significant performance improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا