ﻻ يوجد ملخص باللغة العربية
DuctTake is a system designed to enable practical compositing of multiple takes of a scene into a single video. Current industry solutions are based around object segmentation, a hard problem that requires extensive manual input and cleanup, making compositing an expensive part of the film-making process. Our method instead composites shots together by finding optimal spatiotemporal seams using motion-compensated 3D graph cuts through the video volume. We describe in detail the required components, decisions, and new techniques that together make a usable, interactive tool for compositing HD video, paying special attention to running time and performance of each section. We validate our approach by presenting a wide variety of examples and by comparing result quality and creation time to composites made by professional artists using current state-of-the-art tools.
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the sa
In this paper, we present a unified, end-to-end trainable spatiotemporal CNN model for VOS, which consists of two branches, i.e., the temporal coherence branch and the spatial segmentation branch. Specifically, the temporal coherence branch pretraine
The rapid development of facial manipulation techniques has aroused public concerns in recent years. Following the success of deep learning, existing methods always formulate DeepFake video detection as a binary classification problem and develop fra
We propose a self-supervised learning method to jointly reason about spatial and temporal context for video recognition. Recent self-supervised approaches have used spatial context [9, 34] as well as temporal coherency [32] but a combination of the t
Image compositing is a task of combining regions from different images to compose a new image. A common use case is background replacement of portrait images. To obtain high quality composites, professionals typically manually perform multiple editin