ﻻ يوجد ملخص باللغة العربية
We study the symmetric weighted first-order model counting task and present ApproxWFOMC, a novel anytime method for efficiently bounding the weighted first-order model count in the presence of an unweighted first-order model counting oracle. The algorithm has applications to inference in a variety of first-order probabilistic representations, such as Markov logic networks and probabilistic logic programs. Crucially for many applications, we make no assumptions on the form of the input sentence. Instead, our algorithm makes use of the symmetry inherent in the problem by imposing cardinality constraints on the number of possible true groundings of a sentences literals. Realising the first-order model counting oracle in practice using the approximate hashing-based model counter ApproxMC3, we show how our algorithm outperforms existing approximate and exact techniques for inference in first-order probabilistic models. We additionally provide PAC guarantees on the generated bounds.
In human-aware planning, a planning agent may need to provide an explanation to a human user on why its plan is optimal. A popular approach to do this is called model reconciliation, where the agent tries to reconcile the differences in its model and
In 1998, Brassard, Hoyer, Mosca, and Tapp (BHMT) gave a quantum algorithm for approximate counting. Given a list of $N$ items, $K$ of them marked, their algorithm estimates $K$ to within relative error $varepsilon$ by making only $Oleft( frac{1}{vare
We define a new measure of network symmetry that is capable of capturing approximate global symmetries of networks. We apply this measure to different networks sampled from several classic network models, as well as several real-world networks. We fi
We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of ever
The graphical structure of Probabilistic Graphical Models (PGMs) encodes the conditional independence (CI) relations that hold in the modeled distribution. Graph algorithms, such as d-separation, use this structure to infer additional conditional ind