ترغب بنشر مسار تعليمي؟ اضغط هنا

Polymorphism and superconductivity in the V-Nb-Mo-Al-Ga high-entropy alloys

91   0   0.0 ( 0 )
 نشر من قبل Zhi Ren
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-entropy alloys (HEAs) are at the focus of current research for their diverse properties, including superconductivity and structural polymorphism. However, the polymorphic transition has been observed only in nonsuperconducting HEAs and mostly under high pressure. Here we report the discovery of superconductivity and temperature-driven polymorphism in the (V$_{0.5}$Nb$_{0.5}$)$_{3-x}$Mo$_{x}$Al$_{0.5}$Ga$_{0.5}$ (0.2 $leq$ $x$ $leq$ 1.4) HEAs. It is found that the as-cast HEA is of a single body-centered cubic (bcc) structure for $x$ = 0.2 and a mixture of the bcc and A15 structures for higher $x$ values. Upon annealing, the bcc structure undergoes a polymorphic transformation to the A15 one and all HEAs exhibits bulk superconductivity. For $x$ = 0.2, whereas the bcc polymorph is not superconducting down to 1.8 K, the A15 polymorph has a superconducting transition temperature $T_{rm c}$ of 10.2 K and an estimated zero-temperature upper critical field $B_{rm c2}$(0) of 20.1 T, both of which are the highest among HEA superconductors. With increasing Mo content $x$, both $T_{rm c}$ and $B_{rm c2}$(0) of the A15-type HEAs decrease, yet the large ratio of $B_{rm c2}$(0)/$T_{rm c}$ signifies a disorder-induced enhancement of the upper critical field over a wide $x$ range. The decrease in $T_{rm c}$ is attributed to the decrease in both the electronic specific-heat coefficient and electron-phonon coupling strength. Furthermore, the valence electron count dependence of $T_{rm c}$, which is different from both the binary A15 and other structurally different HEA superconductors, suggests that $T_{rm c}$ may be increased further by reducing the number of valence electrons. Our results not only uncover HEA superconductors of a new structural type, but also provide the first example of polymorphism dependent superconductivity in HEAs.

قيم البحث

اقرأ أيضاً

312 - Bin Liu , Jifeng Wu , Yanwei Cui 2020
We report the superconducting properties of new hexagonal Nb$_{10+2x}$Mo$_{35-x}$Ru$_{35-x}$Rh$_{10}$Pd$_{10}$ high-entropy alloys (HEAs) (0 $leq$ $x$ $leq$ 5). With increasing $x$, the superconducting transition temperature $T_{rm c}$ shows a maximu m of 6.19 K at $x$ = 2.5, while the zero-temperature upper critical field $B_{rm c2}$(0) increases monotonically, reaching 8.3 T at $x$ = 5. For all $x$ values, the specific heat jump deviates from the Bardeen-Cooper-Schreiffer behavior. In addition, we show that $T_{rm c}$ of these HEAs is not determined mainly by the density of states at the Fermi level and would be enhanced by lowering the valence electron concentration.
In this paper, potential two-gap superconductivity in Mo$_8$Ga$_{41}$ is addressed in detail by means of thermodynamic and spectroscopic measurements. Combination of highly sensitive ac-calorimetry and scanning tunneling spectroscopy (STS), as bulk a nd surface sensitive probes, utilized on the same piece of crystal reveals that there is only one intrinsic gap in the system featuring strong electron-phonon coupling. Traces of multiple superconducting phases seen by STS and also in the heat capacity measured in high magnetic fields on a high-quality and seemingly single-phase crystal might mimic the multigap superconductivity of Mo$_8$Ga$_{41}$ suggested recently in several studies.
Electrical resistivity, magnetic susceptibility, and specific heat measurements on single crystals of La$Tr_{2}$Al$_{20}$ ($Tr$ = Ti, V, Nb, and Ta) revealed that these four compounds exhibit weak-coupling superconductivity with transition temperatur es $T_{rm c}$ = 0.46, 0.15, 1.05, and 1.03 K, respectively. LaTi$_{2}$Al$_{20}$ is most probably a type-I superconductor, which is quite rare among intermetallic compounds. Single-crystal X-ray diffraction suggests rattling anharmonic large-amplitude oscillations of Al ions (16$c$ site) on the Al$_{16}$ cage, while no such feature is suggested for the cage-center La ion. Using a parameter $d_{rm GFS}$ quantifying the guest free space of the cage-center ion, we demonstrate that nonmagnetic $RTr_{2}$Al$_{20}$ superconductors are classified into two groups, i.e., (A) $d_{rm GFS} e 0$ and $T_{rm c}$ correlates with $d_{rm GFS}$, and (B) $d_{rm GFS} simeq 0$ and $T_{rm c}$ seems to be governed by other factors.
The binary Re$_{1-x}$Mo$_x$ alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susce ptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re$_{1-x}$Mo$_x$ binary phase diagram, in all its four different solid phases: hcp-Mg ($P6_3/mmc$), $alpha$-Mn ($Ioverline{4}3m$), $beta$-CrFe ($P4_2/mnm$), and bcc-W ($Imoverline{3}m$), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re$_{1-x}$Mo$_x$ alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the $T_c$ is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several $alpha$-Mn-type Re$T$ alloys ($T$ = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg$_{10}$Ir$_{19}$B$_{16}$ or Nb$_{0.5}$Os$_{0.5}$, the Re$_{1-x}$Mo$_x$ alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the Re$T$ family.
A cage compound AxV2Al20 (Al10V), that was called an Einstein solid by Caplin and coworkers 40 years ago, is revisited to investigate the low-energy, local vibrations of the A atoms and their influence on the electronic and superconducting properties of the compound. Polycrystalline samples with A = Al, Ga, Y, and La are studied through resistivity and heat capacity measurements. Weak-coupling BCS superconductivity is observed below Tc = 1.49, 1.66, and 0.69 K for Ax = Al0.3, Ga0.2, and Y, respectively, but not above 0.4 K for Ax = La. Low-energy modes are detected only for A = Al and Ga, which are approximately described by the Einstein model with Einstein temperatures of 24 and 8 K, respectively. A weak but significant coupling between the low-energy modes, which are almost identical to those called rattling in recent study, and conduction electrons manifests itself as anomalous enhancement in resistivity at around low temperatures corresponding to the Einstein temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا