ﻻ يوجد ملخص باللغة العربية
A cage compound AxV2Al20 (Al10V), that was called an Einstein solid by Caplin and coworkers 40 years ago, is revisited to investigate the low-energy, local vibrations of the A atoms and their influence on the electronic and superconducting properties of the compound. Polycrystalline samples with A = Al, Ga, Y, and La are studied through resistivity and heat capacity measurements. Weak-coupling BCS superconductivity is observed below Tc = 1.49, 1.66, and 0.69 K for Ax = Al0.3, Ga0.2, and Y, respectively, but not above 0.4 K for Ax = La. Low-energy modes are detected only for A = Al and Ga, which are approximately described by the Einstein model with Einstein temperatures of 24 and 8 K, respectively. A weak but significant coupling between the low-energy modes, which are almost identical to those called rattling in recent study, and conduction electrons manifests itself as anomalous enhancement in resistivity at around low temperatures corresponding to the Einstein temperatures.
High-entropy alloys (HEAs) are at the focus of current research for their diverse properties, including superconductivity and structural polymorphism. However, the polymorphic transition has been observed only in nonsuperconducting HEAs and mostly un
Ni/Ga bilayers are a versatile playground for exploring the competition of the strongly antagonistic ferromagnetic and superconducting phases. Systematically characterizing this competitions impact on highly ballistic Al/Al$_2 $O$_3 $/Ni/Ga junctions
In this paper, potential two-gap superconductivity in Mo$_8$Ga$_{41}$ is addressed in detail by means of thermodynamic and spectroscopic measurements. Combination of highly sensitive ac-calorimetry and scanning tunneling spectroscopy (STS), as bulk a
We report a $^{71}$Ga nuclear-quadrupole-resonance (NQR) study on the characteristics of superconductivity in noncentrosymmetric Ir$_2$Ga$_9$ at zero field (H=0). The $^{71}$Ga-NQR measurements have revealed that $1/T_1$ has the clear coherence peak
(Abridged abstract) Alloyed MgB2 differs from pure forms in that diffusion is needed to distribute the alloying elements homogeneously. Williamson-Hall analyses of x-ray diffraction peaks showed that Mg1-xAlxB2 samples made by a typical reaction A ha